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saturation magnetizations expected from these for- 
mulas were 7.2,2.6, and 5.7 ks, respectively. The first 
magnetization curves at 10 K showed that magneti- 
zation for (b) almost saturated at 5 T. The saturation 
magnetization of (b), 1.8 k, per unit cell, was relatively 
close to the 2.6 k, expected from the unit cell formu- 
la. The low saturation magnetization could be ex- 
plained by the existence of a relatively large amount of 
C r - C N - C r  moieties, in which the spins of the d or- 

Achieving Linear Scaling for the Electronic 
Quantum Coulomb Problem 

Matthew C. strain, Gustavo E. Scuseria,* Michael J. Frisch 

Thecomputation of the electron-electron Coulomb interaction is one of the limiting factors 
in ab initio electronic structure calculations. The computational requirements for calcu- 
lating the Coulomb term with commonly used analytic integration techniques between 
Gaussian functions prohibit electronic structure calculations of large molecules and other 
nanosystems. Here, it is shown that a generalization of the fast multipole method to 
Gaussian charge distributions dramatically reduces the computational requirements of 
the electronic quantum Coulomb problem. Benchmark calculations on graphitic sheets 
containing more than 400 atoms show near linear scaling together with high speed and 
accuracy. 

Although first-principles electronic struc- 
ture calculations of molecules have become 
routine, they remain limited to systems of 
modest size because of their steep computa- 
tional cost. The electronic Coulomb prob- 
lem, which scales quadratically with system 
size, is one of the fundamental obstacles in 
the quest for ab initio computations of large 
molecules. In this report, we present quan- 
titative evidence demonstrating that a gen- 
eralization of the fast multipole method 
(FMM) (1-3) to Gaussian charge distribu- 
tions achieves near-linear scaling for the 
quantum Coulomb problem. The method, 
the accuracy of which we have tuned to 
machine precision in specific cases, be- 
comes faster than standard analytic evalua- 
tion of Gaussian two-electron integrals for 
systems containing as few as 300 basis func- 

M. C. Strain and G. E. ~cuseria, Center for Nanoscale 

tions. Our method integrates concepts re- 
cently introduced by others (4, 5) with 
unique elements as described below. 

In the FMM, the system under consider- 
ation is embedded in a hierarchv of 8" (n  < 
7 in this work) cubic boxes a; the finest 
mesh level. where n s~ecifies the total num- 
ber of tiers. All charge distributions located 
in a given box are represented by multipole 
expansions about the center of the box. For 
highly accurate results, the near-field (NF) 
portion of the problem, which is defined by 
interactions inside a given box and neigh- 
boring boxes, is treated exactly. Interactions 
in the far-field (FF) are treated through mul- 
tipole expansions. The distinctive character- 
istic of the FMM is that translation tech- 
niques allow these multipole expansions to 
interact at different mesh levels (depending 
on the distance between their centers) 
through an upward and downward pass of 

Science and Technology, Rice Quantum Institute, and the tree hierarchy, yielding a with 
Department of Chemistry, MS 60, Rice University, Hous- 
ton, TX 77005-1 892, USA. effective linear scaling (2). 
M. J. Frisch, Lorentzian, Inc., 140 Washington Avenue, Crucial to the generalization, of the 
~ o r t h  Haven, CT 06473, USA. Greengard-Rohklin algorithm (1, 2)  to the 
*To whom correspondence should be addressed. quantum Coulomb problem is the defini- 

bital canceled out each other. On the other hand, the 
magnetization curves for (a) and (c) still increased at 
around 5 T, and the magnetizations obtained at 5Tfor 
(a) and (c) were fairly small compared with saturation 
magnetization expected from their formulas. Howev- 
er, it seems that such small values are often observed 
for chromium cyanide magnets. Mallah eta/. (4), for 
example, reported 1.4 k, at 7 T, instead of the ex- 
pected 6 k,, for Cr5(CN),, (T, = 240 K). 

14. The FT-IR spectra obtained before and after the 
electrochemical reduction showed that the absorp- 
tion coefficient of CN at 2071 cm-' was about 1.7 
times as large as that at 21 87 cm-'. Considering the 
relative absorption coefficient of the CN stretching 
peaks and the IR spectra in Fig. 2, the ratio of Cr1I1 
to Crll coordinated to the carbon in (b) could be 
estimated to be 0.80:0.20, that is, Cr! ,,(high- 
spin)Cr~g,[Cr~,,o(low-spin)Cr~~80(CN),l. 

15. Electrically tunable magnets are proposed here to 
be designated as "electromagnetic materials" by 
analogy with the term "electrochromism." 

16. We thank H. Etoh and J, lchiyanagi for their support 
in these experiments and D. Tryk for reading the 
manuscript. 
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tion of range or spatial extent of a contin- 
uum charge distribution. For Gaussian func- 
tions (4), the range definition can be de- 
rived from the basic Coulomb integral be- 
tween two s-type distributions (6) as 

where s is the exponent of the product 
Gaussian distribution, Erfc-I is the inverse 
of the comnlementarv error function, and E 
is the desiied error ;n the approximation. 
The real number r is rounded up to the 
nearest integer, thus guaranteeing an error 
smaller than E per interaction (7). In our 
Gaussian FMM (GFMM) implementation, 
a given interaction is included in the FF 
only if the number of boxes separating the 
edge of the boxes containing the two charge 
distributions is larger than the sum of the 

L7 

ranges of the distributions; for the results 
presented in this report, this number is at 
least two boxes. The electron-electron NF 
interactions were treated exactlv through " 

six-dimensional analytic integration of 
Gaussian functions. We also truncated the 
maximum 1 (l,,,x) of a given multipole ex- 
pansion to an effective value lei, based on 

where E is the desired accuracy, a is a constant 
whose optimum value is 0.63, and k is adjust- 
ed such that lCFf = lmdx when R = 3 boxes. 
This simple formula is straightforward, sub- 
stantially improves the speed of the GFMM 
(which asymptotically scales as l:,,), and still 
vields verv accurate results. This annroach, 
khich shaies the basic philosophy of the "very 
fast" FMM recentlv introduced for the noint- 
charge case (5), is bartially responsible k r  the 
good scaling properties of our method and is 
denoted GvFMM herein (7). 

All comnutational develo~ments and cal- 
culations reported here were carried out with 
a development version of the Gaussian suite 
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of wroerams (8). The basis sets used in the 
& - . , 

benchmark calculations were 3-21G and 
6-31G*Y'. The latter consists of (4s2~ld)-  

. & .  

and (2slp)-contracted Gaussian functions 
for carbon and hydrogen, respectively. The 
graphitic sheets used in the benchmark cal- 
culations (9) consisted of the series of mol- 
ecules C6,,2H6,,, for m = l to 8. The Cou- 
lomb contribution to the Hamiltonian 
(Coulomb matrix) and Coulomb energies 
were obtained with the use of the tight self- 
consistent field ISCF) owtion of the Gauss- 

~ , L  

ian program (8): Total energies were evalu- 
ated at the lodal density approxi~nation 
(LDA) of density functional theory with the 
fine-grid option in the same package. 

Table 1 presents a selection of representa- 
tive total energy errors using two sets of pa- 
rameters: the set lm,, = 15 and E = for 
demonstrating the accuracy of the method, 
and the set 1 = 12 and E = which 
was used in the rest of the calculations report- 
ed here. The latter set provides the desired 
accuracy of -lop6 Hartrees for the Coulomb 
energy, which is smaller than the estimated 
numerical error arising: from the exchange- 
correlation numerical uuadrature, and should 
have a negligible effec; on the chemistry un- 
der studv. 

The ;umber of significant charge distri- 

Table 1. Energy errors between exact and 
GvFMM Coulomb energies. 

N ~ ~ .  Num- Absolute 
Mole- Basis of ber of error 
cule set distri- (Hartrees) boxes butions 

Fig. 1. Linear dependence of the number of non- 
negligible charge distribution~ on the number of 
contracted Gaussian functions In C5,2H,, (m = 1 
to 8) graph~tic sheets obtained with existing orbit- 
al-pair screening tools in the Gaussian program. 

butions (products of basis functions) de- 
pends linearly on the number of contracted 
Gaussian basis functions for the two differ- 
ent bases studied (Fig. 1). Negligible charge 
distributions were eliminated by the exist- 
ing orbital-pair screening tools in the Gaus- 
sian program (8); such screening is a pre- 
requisite for achieving linear scaling for the 
Coulomb problem. 

We compared the computational (CPU) 
times required for calculating the entire (NF 
+ FF) Coulomb matrix with standard analytic 
two-electron integral evaluation between 
contracted Gaussian functions and with 
GvFMM (Fig. 2). The GvFMM becomes 
competitive with analytic integration for 
modest system size (CZ4H,, in Fig. 2) and a 
small number of basis functions (-300). If the 
three points corresponding to the largest cal- 
culations on each of the curves in Fig. 2 are 
fitted with an N" functional form, we obtain 
an effective scaling exponent of fl = 2.1 1 for 
analytic integration [in agreement with our 
previous estimate (9) based on a different 
integral package] and fl = 1.35 for the 
GvFMM. The asymptotic scaling exponent 
for the GvFMM is thus substantially lower 
than the limiting quadratic behavior observed 
for analytic integration. For the largest calcu- 
lation carried out in this work, C,,,H,, with 
a 3-21G basis, the GvFMM is more than eight 
times faster than analytic integration (Fig. 2). 
This is accomplished in calculations with an 
accuracy of Hartrees. 

The computational cost of the FF por- 
tion of the Coulomb problem was deter- 
mined as a function of molecular size for 
different numbers of boxes and values of 
l,nc,y (Fig. 3). Sublinear and near-linear scal- 
ing behavior is evident from these data. If 

Number of basis functions 

Fig. 2. CPU times (obtained on an IBM/RS6000- 
370) for the formailon of the Coulomb matrix (first 
iteration of the SCF procedure), in a series of 
C5,2H5, (m = 1 to 8) graphitic sheets with a 
3-21 G basis, for state-of-the-art analytic ~ntegra- 
tion of contracted Gaussian functions and for 
GvFMM w~th 83 (m = I ) ,  84 (m = 2), 8, (m = 3 to 
7), and 8" (m = 8) boxes. The Cl parameter is the 
asymptotic scaling exponent (time - N") ob- 
tained in a log-log plot of the three largest calcu- 
lations for both curves. The crossover between 
the two curves occurs at approximately 300 basis 
functions. 

for a fixed number of boxes the molecular 
system increases in size, the box length 
increases and the Gaussian ranges decrease, 
until eventually they all reach a range of 1 
box, at which point the scaling becomes 
auadratic. However. our benchmarks indi- 
cate that faster execution of the entire Cou- 
lomb problem (NF + FF) using one more 
tier occurs well before the limiting case of 
range 1 box. Thus, quadratic scaling in the 
GvFMM is avoided in a manner similar to 
that of the point-charge case (2).  

A breakdown of the NF and FF compo- 
nents of the Coulomb problem calculated 
with the GvFMM for B5 boxes (Fig. 4) 
shows that the computational time is dom- 
inated by the NF portion of the problem 
(that is, analytic integration of the interac- 
tions not picked up by the GFMM), even 
though the vast majority of interactions 
occur in the FF. For C384H48 in a 3-21G 
basis, 97% of all interactions are in the FF, 
and -50% of the remaining 3% NF inte- 

Number of basis functions 

Fig. 3. Near-linear CPU t~me (obtained on an IBM/ 
RS6000-370) dependence of the far-field (FF) 
component of the molecular Coulomb problem on 
the number of contracted Gausslan functions. 
Cusps on the curves result from changes in Gaus- 
sian ranges with increasing size of the graphitic 
sheets. From top to bottom: (0) 8, boxes, I ,,, = 

15; (0) 8, boxes, I ,,, = 12; (1) 84 boxes, 1 ,,, = 

15; and (0) 84 boxes, I ,,, = 12. 

Number of basis functions 

Fig. 4. CPU times (obtained on an IBM/RS6000- 
370) for computing the N F  and FF components of 
the quantum Coulomb problem in a serles of gra- 
phitic sheets with a 3-21G basis and 8, boxes. 
Note the relatively large computational cost of the 
NF component, even though for the largest sys- 
tems, the FF accounts for more than 95% of all 
~nteractions. 
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grals are neglected as a result of the screen- 
ing techniques (Fig. 5) .  Thus, a mere 
-1.5% of all interactions in this molecule 
are treated bv analvtic integration. Howev- 
er, this computatih is cosly (Fig. 4). 

In the GFMM, the se~aration between NF 
and FF is done in terms of uncontracted Gaus- 
sian functions because the ~roduct of two 
contracted Gaussians gives a linear combina- 
tion of Gaussian distributions with different 
exponents centered at different points. The 
range criterion explained above thus has to be 
individually applied to these charge distribu- 
tions. On the other hand, modern Gaussian 
integral packages, and in particular the 
PRISM algorithm (10) used in the Gaussian 
program (8), utilize contracted basis sets, 
thereby significantly reducing the computa- 
tional cost of evaluating integrals over the 
uncontracted set. We estimate (Figs. 4 and 5) 
that calculating NF integrals over uncon- 
tracted rather than contracted f~lnctions for 
the 3-21G basis increases the computational 
cost by a factor of 5. This factor imposes a 
lower bound on the percentage of interactions 
that must be included' in the FF for the 
GvFMM to become competitive with analytic 
integration. Given an overhead factor of 5 
and neglecting the cost of FF evaluation, the 
GvFMM would be more expensive than ana- 
lytic integration whenever more than 20% of 
all interactions were included in the NF. In 
our benchmarks, this break-even point is 
achieved at small molecular size (Fig. 5). 

In a timing comparison in a fully uncon- 
tracted basis set, the GvFMM became as 
much as 50 times faster than analytic inte- 
gration for fairly small-size molecular sys- 
tems. All results reported in this paper were 
obtained with contracted bases, because 
these are commonly used in practical cal- 
culations. These results, although limited to 
benchmark graphene-sheets, are also valid 
for more coln~lex materials. Given the 
speed, accuracy, and scaling properties of 

a 40 Screened out in NF 

0 20 

P 

0 1000 2000 3000 4000 

Number of basis functions 

Fig. 5. (0) Percentage of interactions (uncon- 
tracted two-electron integrals) included in the FF 
component of the GvFMM (for the optimum box- 
size distribution used in Fig. 2) and treated by the 
tree hierarchy. (0) Percentage of uncontracted 
two-electron integrals that were prescreened and 
neglected in the NF poriion of the Coulomb prob- 
lem using empirical and mathematical bounds. 

the GvFMM in practical, high-accLlracy 7. The technical details of our present implementa- 

calculations, this method appears very tion, and an extensive study of the method's accu- 
racy and speed, will be reported elsewhere. 

promising for future electronic structure We prefer the name "Gaussian FMM" over "con- 
calculations on large molecular systems. tinuous FMM" [as in (4)] to underscore the fact 

that (i) the product of two Gaussian orbitals is a 
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Low-Compressibility Carbon Nitrides 
David M. Teter and Russell J. Hemley 

First-principles calculations of the relative stability, structure, and physical properties of 
carbon nitride polymorphs predict a cubic form of C3N4 with a zero-pressure bulk modulus 
exceeding that of diamond. Like diamond, this new phase could potentially be synthesized 
at high pressure and quenched to ambient pressure for use as a superhard material. The 
calculations also predict that a-C3N4 and graphite-C3N4 are energetically favored relative 
to 6-C3N4 and that published diffraction data can be re-indexed as a-C3N, with lower error. 

Intense theoretical and experimental inter- 
est has been focused on the possibility of 
new low-compressibility materials with bulk 
moduli and hardness exceeding that of dia- 
mond. Carbon nitrides have been proposed 
as superhard materials on the basis of empir- 
ical systematics (1 ). First-principles calcula- 
tions have suggested that a hypothetical ma- 
terial, p-C3N,, may have a bulk modulus 
somewhat lower than that of diamond (2 ,  
3). These results have motivated theoretical 
calculations (4-8) and experimental efforts 
to synthesize and characterize this corn- 
pound (10-20). Amorphous C-N films have 
been synthesized (14, 16, 20), and small 
crystallites have been found in some of these 
films (15, 17-1 9). Electron diffraction pat- 
terns of these crystallites were indexed as the 
P-C3N4 structure. However, these data can 
also be fit to carbon phases (9). Other forms 
of carbon nitride with high hardness have 
been suggested, including a fullerene-like 
carbon nitride (21) and a crystalline carbon 
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nitride composite (22). In this report, we 
investigate the stability and properties of 
carbon nitrides using first-principles calcu- 
lations and show that a-C3N, and graphite- 
C3N4 are energetically preferred over 
P-C3N4 and describe a cubic form of C3N, 
that may have a zero-pressure bulk modulus 
(KO) exceeding that of diamond and be 
metastable at zero pressure. 

Assuming that a low-energy carbon ni- 
tride structure with a high bulk modulus 
must have carbon four-coordinated with ni- 
trogen, and nitrogen three-coordinated 
with carbon, we have identified several ad- 
ditional prototype structures by considering 
chemical systems with this type of bonding 
topology and by locating dense structures in 
these systems. Using first-principles pseudo- 
potential total energy techniques (23), we 
examined a series of C,N4 polylnorphs to 
determine their energetics, structure, and 
physical properties, including KO, density, 
and band gap. 

Our calculations, like those in earlier 
studies of carbon nitride (4-7), were carried 
out using density-f~~nctional techniques 
within the local density approximation 
(LDA) to electron exchange and correla- 
tion. We used a preconditioned conjugate- 
gradient method to minimize the electronic 
degrees of freedom. The electronic wave 
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