Evolution of Body Size in the Woodrat over the
Past 25,000 Years of Climate Change
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Microevolutionary changes in the body size of the bushy-tailed woodrat (Neotoma cinerea)
since the last glacial maximum were estimated from measurements of fecal pellets
preserved in paleomiddens from the Great Basin and Colorado Plateau of the United
States. The changes closely track regional temperature fluctuations simulated by the
Community Climate Model of the National Center for Atmospheric Research and also
those estimated from deuterium isotope ratios of plant cellulose recovered from paleo-
middens. Body size decreased during periods of climatic warming, as predicted from
Bergmann’s rule and from physiological responses to temperature stress. Fossil woodrat
middens; by providing detailed temporal sequences of body sizes from many locations,
permit precise quantification of responses to climatic change that have occurred in the

past and may occur in the future.

The past 2 million years of Earth history
have been characterized by large fluctuations
in atmospheric chemistry and global cli-
mate—the glacial-interglacial cycles of the
Pleistocene. The past 25,000 years have seen
a general warming trend, beginning with the
last glacial maximum (LGM) about 21,000
years ago, accelerating with deglaciation be-
tween 15,000 and 12,000 years ago, and
increasing in the past several decades prob-
ably as a result of anthropogenic loading of
atmospheric greenhouse gases (1). Associat-
ed with such climatic variation have been
major changes in vegetation and in the com-
position of plant and animal communities
(2, 3). Presumably these changes represent
the effects of environmental temperature
and other conditions on both the perfor-
mance of individual organisms and the ecol-
ogy of populations and ecosystems. A major
question is whether plants and animals have
remained essentially unchanged but have
dramatically altered their distributions in re-
sponse to climate fluctuations, or have re-
mained in place and adapted to the varying
environment by some combination of phe-
notypic plasticity and evolutionary change.

Contemporary populations of North
American rodents exhibit extensive geo-
graphic variation in body size and coat color
(4-6). Classical studies have shown that this
variation reflects genetic adaptation to local
and regional environmental conditions (7).
An example of such adaptation is Berg-
mann’s rule, a positive relation between
body size and latitude that reflects the ad-
vantages of large size as a way of conserving
heat and of small size as a way of dissipating
heat (4). Woodrats of the genus Neotoma
conform to Bergmann’s rule (5). They are
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smaller in warmer regions (Fig. 1A), presum-
ably reflecting the capacity of smaller indi-
viduals to dissipate heat and hence to survive
the stress of high ambient temperatures (Fig.
1B). An animal’s size affects such fundamen-
tal physiological and ecological factors as
metabolic rate, fecundity, longevity, home
range, and even extinction rates (8). Thus,
the identification of factors that influence
body size is crucial to understanding the
basic ecology and evolution of a species, as
well as for predicting responses to changing
environmental conditions.

Woodrats are ideal for investigation of
the influences of past climate fluctuations

Fig. 1. Scatterplots and linear regression equa-
tions showing variation in characteristics of wood-
rats as a function of body mass. (A) Relation be-
tween adult body mass and average July temper-
ature in nine contemporary populations of N. ci-
nerea from western Northern America. Data are
taken from museum specimens and from unpub-
lished field notes. Values represent location
means of a minimum of 20 individuals. Weather
data were taken from the U.S. Historical Climatol-
ogy Network and generally represent a minimum
of a 50-year average. We used a terrestrial lapse
rate of —0.5°C per 100 m to correct for elevational
differences between collection sites of locations in
Northern California and the nearest weather sta-
tion. Only a weak relation was observed between
body mass and average January temperatures
(23). (B) Relation between body mass and upper
lethal temperature for 16 individual N. cinerea rep-
resenting several populations; data were taken
from (24). (C) Relation between body mass and
the average width of fecal pellets for three wood-
rat species: N. cinerea, N. lepida, and N. albigula.
Atotal of 30 field-trapped animals (10 per species)
were housed in the laboratory under a constant
temperature and light regime (20°C; 12 hours
light, 12 hours dark) and fed a diet of 40% fiber.
Fecal pellets were collected, dried, and later mea-

on mammalian body size. These herbivo-
rous rodents produce middens containing
plant fragments, copious fecal pellets, and
other materials embedded in crystallized
urine (“amberat”); sheltered in caves and
rock crevices, these deposits persist for tens
of thousands of years. The preservation of
plant and animal remains in the deposits is
excellent, allowing reconstruction of former
distributions (3, 9) and diverse morpholog-
ical, geochemical, and even genetic analy-
ses (10, 11). Because fecal pellet width and
woodrat body size are closely correlated
(Fig. 1C), the numerous fecal pellets in
these middens provide a record of body size
variations over time. If local populations
have adapted to large swings in tempera-
ture, as expected from Bergmann’s rule, we
predict that woodrats in the western United
States should have become smaller during
the last deglaciation. In general, we predict
a strong inverse correlation between body
size and past temperature estimates.

We measured the sizes of fecal pellets in
middens collected at several locations in
the southwestern United States (12). To
avoid the potential complication of changes
in woodrat species, we examined only sites
inhabited at present and in the past by N.
cinerea, the largest and most cold-tolerant
species of woodrat. This species currently
ranges from southern Canada to the moun-
tains of northern New Mexico and Arizona,
but in the Pleistocene it was found at much
lower elevations and as far south as north-
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sured in a blind study. A linear model provides the best fit (y = 0.005x + 3.559; r? = 0.69; P < 0.0001;
partial F test). The size of a fecal pellet can be used to estimate adult body mass with a prediction error
of only 21%; diet does not appreciably alter the relation (73). Little of the variation is attributable to species

or gender (analysis of covariance, P >> 0.05).
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ern Mexico (9). Deposition dates were de-
termined by '#C dating of pellets or of
associated plant macrofossils (or both) and
in most instances were established to within
50 to 100 years. We investigated the poten-
tial influence of diet on the relation be-
tween fecal pellet width and body size by
conducting a blind test with field-trapped
individuals (13); the prediction error was
only 21% for pellets wider than 4 mm.

For each sample, we estimated body size
using the regression equation in the legend
of Fig. 1C and plotted it as a function of
radiocarbon date. Results for one locality,
Fishmouth Cave in southeastern Utah, are
given in Fig. 2. The population not only
shows the overall predicted trend of decreas-
ing size from the last glacial to the present
but also appears to have responded quite
precisely to past temperature fluctuations.
Thus, size decreased at the onset of the in-
terglacial as local and global temperatures
increased. Similarly, body size showed a fur-
ther decrease between 9000 and 6000 years
ago, corresponding to elevated temperatures
during the Altithermal interval (1). The pa-
leomidden sequences for other localities
yielded similar results, but the resolution for
any given site was limited by the number of
14C_dated samples available.

To overcome this limitation and to
quantify the response of body size to climate
change throughout the region, we wished to
pool samples from all localities. The sites
span a range of latitudes and elevations so
that they differ in their present and presum-
ably in their past environmental tempera-
tures. Because body size varies geographical-
ly in accordance with Bergmann’s rule, it
was necessary to account for this variation.
We accomplished this by computing rela-
tive size: the average pellet width for each
paleomidden divided by the mean pellet
width of a modern sample from the same
location. The index enabled us to combine
data from all of the localities. A pattern of
change in body size resulted that is similar

to that obtained for Fishmouth Cave (Fig.
3A). Despite the geographic dispersion of
the sites, there is only a small amount of
scatter in the data, and the data are best fit
by a third-order polynomial.

We compared changes in body size with
past temperature fluctuations in the inter-
mountain west estimated from two sources:
departures from mean July temperature sim-
ulated by the Community Climate Model of
the National Center for Atmospheric Re-
search (NCAR-CCMO) (14) (Fig. 3B) and
mean annual temperature inferred from the
deuterium isotope ratios (8D) of plant cel-
lulose from woodrat middens (10, 15) (Fig.
3C). Neither time series can be considered
a precise paleothermometer (16), but they
do provide two independent estimates of
relative temperature variations during the
past 25,000 years. Estimates from other em-
pirical evidence indicate a somewhat larger
difference between the LGM and the Ho-
locene (17). We analyzed the CCMO and
3D time series by fitting a third-order poly-
nomial, as was done for body size. The
resulting temperature curves closely re-
semble one another and are approximately
mirror images of the curve fitted to the
size data. A conservative estimate of the
influence of temperature on the evolution
of body size can be obtained by regression
of the relative size calculated from fecal
pellets (the individual data points in Fig.
3A) against paleotemperatures estimated
from the regression equations (the fitted
curves in Fig. 3, B and C). The paleotem-
peratures derived from the CCMO and 8D
accounted for 65 and 49%, respectively, of
the variation in body size. These estimates
are conservative because the methods used
to obtain and fit the data on regional
paleotemperature fluctuations necessarily
obscure the details of the local climate
changes at each midden site.

The precision with which the body size
of woodrats tracked changes in environ-
mental temperature is striking. The high
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Fig. 2. Temporal variation in the body size of woodrats from Fishmouth Cave, Utah. Midden material was
collected by J. L. Betancourt. Mean sizes of fecal pellets and resulting estimation of body size from Fig.
1C are plotted as a function of unadjusted radiocarbon date: Vertical and horizontal bars give 95%
confidence intervals. Times of the coldest period (peak of the last glacial), most rapid warming (glacial-
interglacial interval), and warmest period (the Altithermal or Holocene optimum) are indicated.
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rates of evolution implied are similar to the
rapid shifts in body size of many insular
mammal populations after isolation by ris-
ing sea levels at the end of the last glacial
(18). The mechanisms responsible for caus-
ing size change on islands are uncertain.
The size changes of woodrats documented
here, however, are inferred to represent ad-
aptations to environmental temperature.
All populations exhibited a consistent de-
crease in body size in response to each
episode of increasing environmental tem-
perature. A conservative estimate of the
dwarfing that occurred within populations
from the height of the last glacial to the
mid-Holocene is about 20% in mass (Fig.
3A). This figure is more than a quarter of
the entire body size variation seen within
the current geographic range of N. cinerea
(Fig. 1A), a range that extends from north-
ern Arizona to Canada. Although it is likely
that some component of the overall re-
sponse reflects phenotypic plasticity, most
can probably be attributed to genetic
changes. Body size has been found to be

Size relative to present

9 . .
o0} ' )
85— S :
20,000 16,000 12000 8000 4000 0

B

July temperature anomalies
)

o
S
q

)
S

.

-

.

.
-
(=2}

3D (parts per mil)

oo
© &
[=HR=)
.
\
N

.
.
.
E
e
&~ o =

00l———————— . 1
20,000 16,000 12,000 8000 4000 0
Time (radiocarbon yr B.P)

n
Mean annual temperature (°C)

Fig. 3. Third-order regression equations (contin-
uous curves) fitted to data (circles) for woodrat
body size and environmental temperature over the
past 20,000 years. (A) Mean size of fecal pellets
from fossil middens plotted as a function of radio-
carbon date and expressed relative to the size of
pellets from modern middens at the same locali-
ties. (B) Simulated July temperature anomalies ex-
pressed as deviations from modern temperatures
from the NCAR-CCMO (74). (C) Mean annual tem-
perature estimated from deuterium isotope ratios.
Stable isotope ratios (3D) are expressed as parts
per thousand difference from the standard mean
ocean water reference standard (R,): 3D (per mil)
= (R/R, — 1)1000, where R_is the 3H of the
sample (75). All regression equations were con-
strained to give contemporary values (dotted line)
at O yr B.P.
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highly heritable in rodents (19), and Brown
(20) has shown that woodrats born and
reared in the laboratory closely resemble
their wild-caught parents in both body size
and temperature tolerance. It is possible
that some portion of the observed response
reflects elevational or latitudinal migration
of woodrats (as opposed to in situ evolu-
tion), although this too presumably reflects
underlying selection acting on body size.
The evolutionary outcome is the same in
both instances, although the mechanisms
operating are quite different. Because wood-
rats are relatively sedentary and because in
some instances dramatic size changes oc-
curred very rapidly, we favor the latter ex-
planation. Resolution of this issue, howev-
er, must await genetic analyses (21).

Additional global warming resulting
from human activities is predicted to occur
within the next century, and the magnitude
of the warming is likely to equal that oc-
curring at the Pleistocene-Holocene bound-
ary (1, 22). Our results suggest that, in
addition to any potential distributional
shifts, environmental changes are likely to
cause substantial microevolutionary re-
sponses in woodrats and potentially in other
organisms.
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