
haps heterochromatic) genomic region. 
In situ hybridization to salivary gland 

polytene chroinoso~nes (22) confir~ned that 
the  Insertions are localized to different 
chromosomal positions; insertion 3.1-3.3 1s 
at 51A (4L), 3.2-3.6 is at 94A (6R),  and 
25.8-25.9 is at 51C (4L). T h e  two insertions 
in line 25.7 are localized to different chro- 
mosornes: a t  65C (5L) and at the  X chro- 
mosoine [heterochromatic network (23)l. 

In summary, two mdependent transfor- 
Illants were represented among the G 1  prog- 
eny of cage 3, two in cage 25, and one in 
cage 33 (24). Only one of these f ~ v e  trans- 
formants (25.7) had a second (phenotypical- 
ly silent) event in the same germ line. W e  
cannot deternllne whether the different 
transfor~llants from the same cages are de- 
rived from single or multivle GO varents. 
T h e  overall frequency of phenotypically de- 
tectable transformation events 151390 GO , , 

adults) is sufficient for producing several 
transfor~llants from a single experiment, be- 
cause thousands of elnbryos can be injected 
and hundreds of GO adults can be obtained 
within a week with the use of a relativelv 
simple experirneiital setup. Because of the 
simpl~city and safety in handling and del~v-  
ery inherent with D N A  vectors, transposable 
elements with wide "host ranee." such as - 
Minos, coupled with appropriate phenotypic 
markers, could be the vectors of choice for 
gerlnline transformation of insects of agricul- 
tural and medical importance. 
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The white Gene of Ceratitis capitata: A 
Phenotypic Marker for Germline g ran sf or mat ion 

Laurence J. Zwiebel, Giuseppe Saccone, 
Antigone Zacharopoulou, Nora J. Besansky, Guido Favia," 

Frank H. Collins, Christos Louis, Fotis C. Kafatosf 

Reliable germline transformation is required for molecular studies and ultimately for 
genetic control of economically important insects, such as the Mediterranean fruit fly 
(medfly) Ceratitis capitata. A prerequisite for the establishment and maintenance of trans- 
formant lines is selectable or phenotypically dominant markers. To this end, a comple- 
mentary DNA clone derived from the medfly white gene was isolated, which showed 
substantial similarity to white genes in Drosophila melanogaster and other Diptera. It is 
correlated with a spontaneous mutation causing white eyes in the medfly and can be used 
to restore partial eye color in transgenic Drosophila carrying a null mutation in the en- 
dogenous white gene. 

I n  spite of promising leads ( I ) ,  a reliable 
method for germline transformation in in- 
sects other than Drosophila has not been 

L J Zw~ebel and F. C Kafatos, European Molecular 
B~oogy Laboratory (EMBL), Heidelberg, Germany; Insti- 
tute of Molecular Boogy and Biotechnology-FORTH, 
Herakion. Crete. Greece: and De~artment of Cellular and 
Developmental Biology, Haivard University, Cambridge, 
MA, 021 38, USA. 
G. Saccone, Dipartimento di Genetica, Biooga Generae 
e Molecolare, Univers~ta Feder~co I di Napoli, Napoli, 
Italy. 
A. Zacharopoulou, Department of Biology, Unversty of 
Patras, Patras, Greece. 
N J Besansky and F. H Coll~ns, Div~sion of Parasitic 
D~seases, Centers for Disease Control and Prevent~on. 
Atlanta, GA 30341, USA. 
G. Fav~a and C LOUIS, Insttute of Molecular B~oogy and 
Biotechnoloav-FORTH. Herakion. Crete. Greece. ", 

'Present address: lstituto d Parass~tolog~a, Unlversta dl 
Roma 1-00185 Roma, Italy. 
-tTo whom correspondence should be addressed at EMBL, 
Meyerhofstrasse 1, D-69117, Hedelberg, Germany 

available until now (2) .  A substantial ob- 
stacle has been the  lack of genetic markers 
that are suitable for establishing and main- 
taming putative transformants. Therefore, 
to develop transformation markers for a ma- 
jor agricultural pest, the  medfly C. capitata 
(Diptera: Tephritidae) (3 ) ,  we have focused 
o n  genes controlling adult eye color, ~vh ich  
have proven their utility for Drosophila 
transformation (4): 

T h e  medfly displays a complex eye phe- 
notype with reflective and metallic hues, 
but has only three basic eye pigments: xan- 
thommatin (brown), sepiapterin (yellow), 
and tetrahyilropterin (colorless) (5). NLI- 
merous mutant eye color phenotypes have 
been described (6), which by inference from 
D. melanogaster should include defects in 
the  formation of eye pigments. T h e  exis- 
tence of a spontaneous white-eye medfly 
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Fig. 1. Amino acid sequence alignment of Dipteran w gene products. The predicted sequences of the w 
products of the medfly (Cc; this study) (EMBL accession number X89933), D. melanogaster [Dm (8)], L. 
cuprina [LC (9)], and A. gambiae [Ag (1 7)] were aligned wlh the use of PILEUP (15). Nucleotide binding 
(Walker A and B) and ABC transporter signature motifs in the NH,-terminal region are indicated by solid 
underlines; a-helical transmembrane segments in the COOH-terminal region are marked by dashed 
underlines. Dashes in sequences indicate elher gaps in alignment or areas where no consensus is 
possible. Single-letter abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, 
Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu, M, Met; N, Asn; P, Pro; Q. Gln; R, Arg; S, Ser; T, Thr; V, 
Val; W, Trp; and Y, Tyr. 

Con - H ! , - - - ; ~ A L - ~ ~ ~ ~ ~ ~ . N L ~ J . T ~ !  G Y L I S  C A S S  S T  S X ? ~ ~ L ~ P - P ~ J ~ P P L L P j - ~  6 0 0  

mutant, whose phenotype (2) resembles the 
white (w) mutant of D. melanogaster, en- 
couraged us to clone the medfly w gene as a 
potential transformation marker. 

T o  clone medfly w, we designed degener- 
ate oligonucleotide primers (7) based o n  se- 
quence conservation between the protein 
products of the w genes of D. melamgaster 
(8) and the blowfly Luc ih  cupnna (9), to- 
gether with data on medfly codon usage 
(1 0). With the use of medfly genomic DNA 
as a template, specific polymerase chain re- 
action (PCR) products of the expected size 
were generated, cloned, and identified by 
DNA sequence as homologous to w by 
BLAST analysis ( I  I ) .  One of these PCR 
~roducts was used as a  robe to obtain a 
phage clone from a genomic library prepared 
from wild-tv~e medflv DNA (12). This 

a .  . . 
clone was partially sequenced, facilitating 
the design and synthesis of nondegenerate 
w-specific primers for a PCR-based screen 
(13) of a medfly third-instar larval comple- 
mentary DNA (cDNA) library (14). T h i s  
yielded a 2252-base pair (bp) poly(A),,- 
terminated cDNA with an oDen readine " 
frame encoding a predicted protein of 676 
amino acid residues with a molecular mass of 
75.1 kD; Fig. 1 shows an alignment with the 
products of w genes from other Diptera. 
Quantitative comparison (15) over the en- 

Fig. 2. Partial rescue of the white-eye phenotype 
in adult D. melanogaster. A heat shock-inducible 
expression cassette encompassing the medfly w 
cDNA was introduced into the germ line of ry5% 
flies (25) and crossed into the w genetic back- 
ground. After daily heat shock (28), adult male 
transformants (right) display partial pigmentation. 
Untransformed reference stocks are shown, in- 
cluding the unpigmented yw parental strain (bot- 
tom left) and the fully pigmented wild-type Canton 
S strain (top left). 
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tire protein length indicates that the medfly 
sequence is closely related to the w gene 
products of D. melanogaster (8) and L. cup-
rina (9) (85 and 82% identical, respectively), 
whereas the corresponding sequence of the 
mosquito Anopheles gambiae (16) is some­
what more divergent (62% identical). The 
putative medfly w gene product is less similar 
to insect pigment transporters encoded by 
the topaz gene of L. cuprina (9) (37% iden­
tical) and by the scarlet (17) and brown (18) 
genes of D. melanogaster (35 and 31% iden­
tical, respectively). 

The high sequence similarity to the w 
gene products of other insects also involves 
identity in characteristic functional motifs 
(Fig. 1). In the NH2-terminal region, a 
248-residue segment of invariant length 
contains three motifs representing the 
adenosine triphosphate-binding cassette of 
the ABC active transporter superfamily of 
membrane-associated proteins (19). These 
motifs include the "Walker A" motif (20), 
which is thought to be the site of phosphate 
group-mediated nucleotide binding (21); a 
less-characterized site known as the "Walk­
er B" motif (19); and a generally defined 
signature consensus for this class of pro­
teins, located between the two Walker mo­
tifs. All three motifs are identical in the 
products of the putative w medfly sequence 
and of the known Drosophila and Lucilia w 
genes, whereas that of the A. gambiae w 
gene differs by a single conservative re­
placement in the Walker B motif. An ad­
ditional conserved feature is a predicted 
transmembrane domain in the COOH-ter-
minal region consisting of six a-helical seg­
ments, five of which are within a conserved 
246-residue segment that is invariable in 
length (Fig. 1). 

Cytological studies support the hypoth­
esis that the putative w gene homolog is 
impaired in the spontaneous white-eye 
medfly mutation (2): This recessive muta­
tion is uncovered by a small deletion that 
spans the 65C subdivision of chromosome 
arm 5L, including the site of in situ hybrid­
ization of the putative w clone (22). This 
site is consistent with previous molecular 
and genetic evidence (23) for persistent 
synteny of X-linked genes and identifica­
tion of the medfly 5L chromosome with the 
X of D. melanogaster (where the D. melano­
gaster w locus resides). 

Definitive proof that the cloned medfly 
cDNA is w and that it can function across 
an evolutionary gap of 100 to 120 million 
years (24) was obtained by heterologous 
transformation. This cDNA can restore pig­
mentation in the white-eye genetic back­
ground of D. melanogaster if placed in a 
P-element vector under heat shock control. 
For this purpose we used 5' and 3 ' flanking 
hsp70 sequences (25), which when com­
bined with D. melanogaster w cDNAs in 

conspecific transformants have been shown 
to rescue the white-eye phenotype by re­
storing partial and variable eye color (26). 
Adult Drosophila transformants carrying one 
copy of the medfly w insertion showed a 
similar dark peach eye color if heat-shocked, 
as compared with the unpigmented yw pa­
rental strain (Fig. 2). Therefore, we predict­
ed that this cloned gene may also be used as 
a dominant transformation marker in the 
medfly to effectively detect germline trans­
formants in the medfly w genetic back­
ground. This prediction is confirmed in an 
accompanying report (2). 
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Identification of a Member of the MAPKKK a S T E ~ ~ ' ' ~  mutatlon ~n the yeajt phero- 
mone-~nduced MAPK pathway (3); an act1- Family as a Potential Mediator of TGF-8 Signal ,rated form .f mammalian (R,~AN) , 

Transduction 
Kyoko Yamaguchi, Kyoko Shirakabe, Hiroshi Shibuya,* 

Kenji Irie,* lsao Oishi, Naoto Ueno, Tadatsugu Taniguchi, 
Eisuke Nishida, Kunihiro Matsumoto 

The mitogen-activated protein kinase (MAPK) pathway is a conserved eukaryotic signaling 
module that converts receptor signals into various outputs. MAPK is activated through 
phosphorylation by MAPK kinase (MAPKK), which is first activated by MAPKK kinase 
(MAPKKK). A genetic selection based on a MAPK pathway in yeast was used to identify 
a mouse protein kinase (TAKl) distinct from other members of the MAPKKKfamily. TAKl 
was shown to participate in regulation of transcription by transforming growth factor-p 
(TGF-p). Furthermore, kinase activity of TAKl was stimulated in response to TGF-p and 
bone morphogenetic protein. These results suggest that TAKl functions as a mediator 
in the signaling pathway of TGF-p superfamily members. 

Activat ion of MAPKs after ligand binding " " 

to various receptors has been correlated 
with numerous cellular responses, including 
proliferation, differentiation, and regulation 
of specific metabolic pathways in differen- 
tiated cell types. The MAPK signal trans- 
duction pathways include three protein ki- 
nases, MAPKKK, MAPKK, and MAPK; 
MAPKKK phosphorylates and activates 
MAPKK, which in turn phosphorylates and 
activates MAPK ( I  ). Thus, MAPK cascades 
constitute functional units that couple up- 
stream input signals to a variety of outputs. 
Several MAPK cascades have been identi- 
fied and characterized in organisms as di- - 
verse as yeasts and mammals (1).  In the 
budding yeast Saccharomyces cereuisiae, at 
least six MAPK pathways have been iden- 
tified and individual MAPK cascades regu- 
late distinct responses (2).  This marked re- 
iteration in yeast suggests that a similar 
reiteration of signal transduction modules - 
may exist in mammalian cells to mediate 
responses to different extracellular stimuli. 

One of the MAPK pathways in S. cerevi- 
siae controls the response to mating phero- 
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mone (2). This signaling cascade consists of 
the Stellp, Ste7p, and Fus3p or Ksslp ki- 
nases, which correspond to MAPKKK, 
MAPKK, and MAPK, respectively. These 
yeast proteins act sequentially to transmit a 
signal to the transcription factor StelZp, 
which activates transcription of mating-spe- 
cific genes such as FUSl (Fig. 1A) (2). We 
developed a genetic approach for the assay of 
mammalian MAPKKK activity that relies on 

A Mating 
pheromone 

4 
G protein 

1 
MAPKKK Sfellp Stel l p d  -9 

4 4 
MAPKK Ste7p: \- 

I I 
MAPK 

4 4 
FUS 1 FUS lp:: HIS3 FUS lp:: HIS3 

HIS- HIS+ 

Vector MEKK1 m 
Vector TAKl rn 

RAF TAKl Q 

MEKKl (MEKKlAN) can suhst~tute for 
S te l lp  actlvlty In a Ste7pP3hR-dependent 
manner as monitored by the histidine pheno- 
type (His) conferred by the mating pathway- 
responsive reporter gene FUS 1 p: :HIS3 (Fig. 
1B). We used this approach to screen a com- 
plementary DNA (cDNA) expression library 
(4) from a murine cell line, BAF-B03, for 
MAPKKKs that might suppress the transcrip- 
tional defect of stel lA STE7r368 cells. One 
cDNA clone was isolated that activated the 
FUSlp::HIS3 reporter gene in a Ste7pP368- 
dependent manner (Fig. 1B). This cDNA en- 
codes a protein kinase, which we designated 
TAK 1 for TGF-P-activated kinase. 

T o  obtain a full-length clone, we 
screened the same cDNA library with the 
TAKl  cDNA insert as a probe and five 
clones were identified. Four clones con- 
tained cDNA corresponding to an addition- 
al -230 base pairs of sequence in the 5' 
region (5). The full-length TAKl  cDNA 
encodes a protein of 579 amino acids (Fig. 
2A). The primary sequence of the TAKl  
protein contains a putative NH2-terminal 
protein kinase catalytic domain and a 300- 
residue COOH-terminal domain (Fig. 2B). 
The catalytic domain contains consensus 
sequences that correspond to protein kinase 

Fig. 1. Screening for mammalian MAPKKK fam- 
ily members in yeast. (A) Model for the yeast 
pheromone-stimulated MAPK pathway. The 
pheromone-stimulated MAPK pathway induces 
transcription of mating-specific genes such as 
FUS1. The FUSlp::HIS3 reporter gene comprises 
the FUSl upstream activation sequence joined to 
the HIS3 open reading frame, and allows signal 
activity in a his3A FUSlp::HIS3 strain to be moni- 
tored by the ability of cells to grow on medium 
lacking exogenous histidine (His phenotype). A 
his3A stel 1A FUSlp::HIS3 STEP368 (proline sub- 
stitution at serine-368) strain has a H i s  phenotype 
because the activity of Ste7pP368 is dependent on 
the presence of the upstream Stel 1 p MAPKKK (3). 
Expression of a mammalian MAPKKK such as 
RafAN or MEKKI AN in this strain confers a His+ 
phenotype (27). (B) Suppression of thestel 1 A mu- 
tation by mammalian genes. Strain SY1984-P 
(his3A stel l A  FUSlp::HIS3 STEP368) was trans- 
formed with various plasmids (27) and each trans- 
formant was streaked onto SC-His plates and in- 
cubated at 30°C. Plasmids were as follows: (upper 
panel) YCplac22 (vector) and pRS314PGKMEK- 
KCAT (MEKKl AN); (lower panel) pNV11 (vector), 
pNVI I -HUI 1 F (TAKI), pADU-RafAN (RafAN), 
and pNVI I - H u l l  (TAKI AN). 
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