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was least able to transport itself, did not
potentiate the cell-to-cell transport of knl
sense RNA-TOTO (Table 3).

KN1 was selective in terms of the RNA
that it would traffic, as shown by coinjec-
tion of TOTO-labeled cucumber mosaic vi-
rus (CMV) single-stranded sense RNA (18)
and KN1 (Fig. 4C, Table 3). The CMV
movement protein, in contrast, potentiated
cell-to-cell transport both of its own RNA
and of knl RNA (Fig. 4D, Table 3), which
is consistent with the known nonspecificity
of viral movement proteins (6—8).

Our finding that KN1 has the capacity
to move from cell to cell provides a possible
explanation for the lack of cell autonomy
seen with the dominant Knl mutation as
well as with other developmental mutations
(3, 4, 19). How such plasmodesmal trans-
port is controlled to create developmental
domains (5) remains to be elucidated. The
extent to which a transcription factor can
move within a tissue may be controlled by
the presence of proteins that regulate its
plasmodesmal and nuclear pore transport.
This might explain why, in the maize mer-
istem, KN1 was present in both L1 and L2
nuclei (Fig. 1), whereas in tobacco meso-
phyll cells, microinjected FITC-KNI
moved preferentially through plasmodesma-
ta rather than into nuclei.

In any event, our studies on KNI pro-
vide insights into some of the molecular
events that orchestrate developmental pro-
cesses in plants and identify one possible
explanation for the plasticity of cell fate in
the plant meristem (2).
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Interaction of Tobamovirus Movement Proteins
with the Plant Cytoskeleton

Manfred Heinlein, Bernard L. Epel,* Hal S. Padgett,t
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The movement protein of tobacco mosaic tobamovirus and related viruses is essential for
the cell-to-cell spread of infection and, in part, determines the host range of the virus.
Movement protein (MP) was fused with the jellyfish green fluorescent protein (GFP), and
a modified virus that contained this MP:GFP fusion protein retained infectivity. In pro-
toplasts and leaf tissues, the MP:GFP fusion protein was detected as long filaments
shortly after infection. Double-labeling fluorescence microscopy suggests that the MP
interacts and coaligns with microtubules. The distribution of the MP is disrupted by
treatments that disrupt microtubules, but not by cytochalasin B, which disrupts filamen-
tous F-actin. Microtubules may target the MP to plasmodesmata, the intercellular chan-

nels that connect adjacent cells.

Most, if not all, plant viruses direct the
synthesis of one or more MPs required for
the spread of infection from the initial site
of infection to adjacent cells. It is generally
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thought that plant viruses circumvent the
cell wall by exploiting plasmodesmata, spe-
cialized gatable channels that provide con-
tinuity between the cytoplasm of contigu-
ous cells (I).

The most thoroughly studied virus-en-
coded MP is that of tobacco mosaic virus
(TMV) (2, 3). In plants infected with TMV
or transgenically expressing MP, the MP is
associated with plasmodesmata and increas-
es their size exclusion limit (4, 5). MP is
targeted to the cell wall but is also found
associated with the plasma membrane and
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in a soluble form (4, 6), suggesting that MP
might also interact with other cellular com-
ponents in addition to plasmodesmata.

To determine how the MP is targeted to
plasmodesmata and to identify host factors

Fig. 1. Fluorescence microsco-
py of living (A and B) and fixed
(12) (C to O) BY-2 protoplasts at
16 hpi. (A and C) Protoplast in-
fected with ObAC-GFP encod-
ing GFP as a free protein. The
same distribution of nonlocal-
ized GFP fluorescence is seenin
protoplasts  infected  with
TMVAC-GFP (74). In proto-
plasts infected with Ob-M:Gfus
(B) or TMV-M:Gfus (D), the GFP
appears as hoops of fluorescent
filaments located in the cortical
region of the cells. Decoration of
GFP-associated filaments (D)
with anti-MP (E). (F) Protoplasts
infected with wild-type TMV and
stained with anti-MP and then
with FITC-conjugated second-
ary antibody. (G and H) Proto-
plasts infected with TMV-M:
Gfus stained with monoclonal
antibody against a-tubulin and
rhodamine-conjugated second-
ary antibody. The MP:GFP fila-
ments shown in (G) co-align
with microtubules shown in (H).
(1to K) Protoplasts infected with
Ob-M:Gfus and observed by
confocal laser-scanning mi-
croscopy: () the filamentous
pattern of MP:GFP, (J) the pat-
tern of microtubules, and (K) the
alignment of MP:GFP filaments
to microtubules visualized by
merging the images shown in (1)
and (J). The combination of red

that interact with MP, we used mutants of
TMV (TMV-M:Gfus) and the related to-
bamovirus Ob (7) (Ob-M:Gfus) that encode
MP as a fusion to the green fluorescent pro-
tein (GFP) from the jellyfish Aequorea victoria

and green signals produces a yellow signal. (L and M) Protoplasts infected with Ob-M:Gfus probed with
anti-actin and rhodamine-conjugated secondary antibody. The distribution of MP:GFP filaments shown
in (L) differs from the distribution of F-actin filaments shown in (M). (N and O) MP:GFP-associated
flaments in protoplasts infected with Ob-M:Gfus or TMV-M:Gfus are destroyed after treatment with
oryzalin (10 wM) (N), which disrupts microtubules, but not after treatment with cytochalasin B (25 ug/ml)
(O), which disrupts F-actin. Scale bar in (A) represents 20 um; all panels are the same magnification as (A).

Fig. 2. Lleaves of N
benthamiana infected with
TMV-M:Gfus at 96 hpi exhibit
rings of GFP fluorescence
(A), which represent expand-
ing sites of infection. Scale
bar in (A) represents 1 mm.
(B) Fluorescent filaments in
some of the cells comprising
the fluorescent ring; part of
an epidermal cell is shown.
(C) The same cell as in (B)
with the cell wall (arrows)
highlighted by superimposed
differential interference con-
trast illumination. Scale bar in
B) and (C) is 50 um. (D)
Within the cells of the fluores-

BF

cent infection site that contain the highest amounts of MP:GFP, the fusion protein appears to be localized
in cytoplasmic bodies closely appressed to the plasma membrane. Scale bar represents 0.1 mm.
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(8). Modified viruses TMVAC-GFP and
ObAC-GFP lead to production of GFP as a
free protein. BY-2 tobacco protoplasts were
inoculated by electroporation of infectious
RNA (9) that was transcribed in vitro from
cloned complementary DNAs (cDNAs) of
each of the modified viruses (10), and the
pattern of GFP fluorescence in the infected
cells was examined at 16 hours post infection
(hpi) (11).

Protoplasts that were infected with
TMVAC-GFP or ObAC-GFP exhibited dif-
fuse fluorescence (Fig. 1A). In contrast, in
cells that were infected with either Ob-M:
Gfus or TMV-M:Gfus the GFP appeared as
long, often aligned filaments that spanned
the cells (Fig. 1B). The filaments were lo-
calized to the cortical region of the cells, in
close proximity to the plasma membrane.

After formaldehyde fixation, the fila-
mentous pattern of MP:GFP fluorescence
was maintained (Fig. 1D). Immunostaining
(12) of fixed cells infected by TMV-M:Gfus
with an antibody to MP (anti-MP) (2) and
a rhodamine-labeled secondary antibody
(13) resulted in specific labeling of the
GFP-containing filaments (Fig. 1E). No
staining was observed in mock-infected
cells (14). Therefore, the filaments contain
MP:GFP fusion protein, and because non-
fused GFP does not appear as filaments (Fig.
1, A and C), we conclude that MP is re-
quired for filament association.

A filamentous staining pattern was also
observed when protoplasts infected with
wild-type TMV were similarly immunola-
beled with anti-MP and fluorescein isothio-
cyanate (FITC)-conjugated secondary an-
tibody (Fig. 1F), suggesting that the fluores-
cent filaments seen in both live and fixed
protoplasts infected with Ob-M:Gfus or
TMV-M:Gfus reflect a distribution of the
wild-type MP.

The pattern of GFP fluorescence shown
in Fig. 1, B and D, is reminiscent of the
cortical array of plant microtubules ob-
served by immunofluorescent labeling (15,
16). In TMV-M:Gfus— and Ob-M:Gfus—in-
fected protoplasts stained with monoclonal
antibodies to tubulin (Fig. 1, G and H), the
pattern of microtubules appears to be simi-
lar if not identical to the pattern of MP:
GFP filaments. Overlaying red tubulin and
green MP:GFP fluorescent images made
from the same cells by confocal laser scan-
ning microscopy shows that MP:GFP fila-
ments and microtubules are coaligned (Fig.
1, I, J, and K). In contrast, no alignment of
MP to filamentous F-actin was evident after
infected cells were probed with monoclonal
antibodies to actin (Fig. 1, L and M) (17).

Infected protoplasts were also treated for
3 hours with microtubule disruptive agents
before fixation and reaction with anti-tubu-
lin. Treatments with cold temperature

(4°C) (14), 10 pM oryzalin (Fig. IN), or 10



wM propyzamide (14) disrupted MP:GFP
filaments, whereas no effect was seen after
treatment with the microtubule-stabilizing
agent Taxol (20 pg/ml) (14) or with cy-
tochalasin B (25 pg/ml), which disrupts
microfilaments (F-actin) (Fig. 10). Cells
infected with TMV-M:Gfus or Ob-M:Gfus
responded similarly to these treatments. We
conclude that the MP filaments we ob-
served are caused by a direct or indirect
interaction of the MP with microtubules,
but not with actin filaments.

To determine whether filamentous
structures could-be observed in planta, we
inoculated leaves of Nicotiana benthamiana
with transcripts derived from pTMV-M:
Gfus. At 96 hpi, rings of fluorescence (Fig.
2A) representing expanding sites of infec-
tion were observed. Cells from the fluores-
cent ring contained fluorescent filaments
reminiscent of those observed in infected
protoplasts (Fig. 2, B and C), suggesting
that the interaction between MP and mi-
crotubules occurs during virus infection of
leaf tissues as well as in protoplasts. In cells
adjacent to those containing fluorescent fil-
aments we observed fluorescent bodies of
irregular shape and distribution that were
near the plasma membrane (Fig. 2D). On
the basis of these observations we propose
that the pathway of targeting MP to the
plasmodesmata involves association of the
protein with cortical microtubules as well as
with a network of cortical bodies of un-
known identity. It has been shown that
both the plasma membrane and cortical
endoplasmic reticulum (ER) are integral
components of the plasmodesmata (18),
and we suggest that nearby cortical micro-
tubules (16, 19, 20) might provide a track
for MP to reach either or both of these
membranes.

Such a role of microtubules in viral in-
fection and the targeting of MP to plasmo-
desmata would be consistent with their gen-
eral role in cellular transport processes that
contributes to the organization and distri-
bution of organelles and their transport in-
termediates (21) and would also be consis-
tent with several virus-microtubule interac-
tions reported in animal cells (22). More-
over, the 65-kD protein of beet yellows
closterovirus binds to microtubules in vitro,
and it was proposed that this binding may
be linked with the process of cell-to-cell
movement of the virus (23).

Further studies are needed to clarify the
nature of the MP-microtubule interaction. It
is possible that MP interacts directly with
cortical microtubules through binding to the
outer wall of the microtubule polymer, as has
been described for microtubule-associated
proteins. However, because microtubules are
closely associated with ER membranes in
animal cells (24) as well as in plant cells
(25), it is also possible that MP participates
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in the secretory pathway and is processed
and transported within ER tubules or ER
vesicles along microtubules. In plant cells ER
membranes form a contiguous system with
the cortical ER (20, 26), which as an inte-
gral component of the plasmodesmata could
deliver the MP into adjacent cells.

The MP of TMV not only accumulates in
plasmodesmata and modifies their size exclu-
sion limit, but also forms unfolded and elon-
gated complexes with single-stranded nucle-
ic acids in vitro (27). This has led to the
model that MP forms a ribonucleoprotein
complex with the viral RNA that is compat-
ible in size with the modified plasmodesma-
ta. Microtubules have been implicated in
transport and localization of mRNA (28),
and the hypothesis has gained strong support
by Ainger et al. (29) who observed mRNA
particles moving along microtubules in mi-
croinjected oligodendrocytes. An additional
question to be answered, therefore, is wheth-
er some portion of the MP-bound fluores-
cence that is associated with microtubules
contains viral RNA.
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