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Direct Perception of Three-Dimensional Motion 
from Patterns of Visual Motion 

Cornelia Fermiiller and Yiannis Aloimonos* 

Measurements of retinal motion along a set of predetermined orientations on the retina 
of a moving system give rise to global patterns. Because the form and location of these 
patterns depend purely on three-dimensional (3D) motion, the effects of 3D motion and 
scene structure on image motion can be globally separated. The patterns are founded on 
easily derivable image measurements that depend only on the sign of image motion and 
do not require information about optical flow. The computational theory presented here 
explains how the self-motion of a system can be estimated by locating these patterns. 

T o  detect the image of movement is the 
u 

first task of all systems with vision, and to 
reach an understanding of movement is a 
primary goal of all later perceptual analysis 
( I ) ,  for animals as well as in robots. Al- 
though an organism or a mechanism may 
move in a nonrigid manner as a whole, with 
the head, arms, legs, wings, or wheels under- 
going different motions, the eyes move rigid- 
lv-that is, as a sum of an instantaneous trans- 
lation and rotation. Thus, the images per- 
ceived on the retina of the eve (or on the film 
in a camera) originate from a rigid motion. 

The fundamental, abstract geometric 
concept used to describe the computational 
analysis of visual motion is that of the two- 
dimensional (2D) motion field: As a system 
moves in its environment, every point of the 
environment has a velocitv vector with re- 
spect to the system. The prk>jection of these 
3D velocitv vectors on the retina of the 
system's eye constitutes the so-called motion 
field. This field denends on the 3D motion 
and the structure of the scene in view. If a 
snherical eve moves with a translation t ,  the 
kot ion field is along the great circles con- 
taining the vector t (Fig. I A ) ,  pointing away 

Computer V~sion Laboratory, Center for Automation Re- 
search, Department of Computer Science and lnsttute 
for Advanced Computer Studies, University of Maryland, 
College Park, MD 20742-3275, USA. 

'To whom correspondence should be addressed. 

from the focus of expansion (FOE) and to- 
ward the focus of contraction (FOC). The 
ooints FOE and FOC are the ooints where t 
cuts the image sphere. If the eye rotates with 
a velocity w (Fig. IB),  the motion field is 
along the circles resulting from the intersec- 
tion of the image sphere with planes perpen- 
dicular to the rotation axis: this axis cuts the 
sphere at points AOR (axis of rotation) and 
-AOR. For general rigid motion, the mo- 
tion field on the sphere is the addition of a 
translational field and a rotational field (Fig. 

u 

1C). In this case, the motion field does not 
have a simple structure, and it becomes dif- 
ficult to locate the points FOE and AOR, 
that is, to solve the problem of determining 
a system's 3D motion (its egomotion) with 
the 2D motion field as i n p ~ ~ t  (2 ) .  

This difficultv is comnounded because 
the information tilat can b i  derived from the 
sequence of images sensed by the moving 
retina is not the exact projection of the 3D 
motion field, but rather onlv information 
about the movement of light patterns. The 
exact movement of everv ooint on the image , u 

is termed the optical flow field. In general, 
accurate values of the o ~ t i c a l  flow field are 
not computable; the so-called normal flow, 
the component perpendicular to the edges, is 
the only component of the optical flow that 
is well defined on the basis of local informa- 
tion. This is the well-known aperture prob- 

Fig. 1. Motion fields on a A A B 4 c 
spherical retina. The im- 
age r of a scene po~nt 
with position vector R 
(with regard to an or- 
thonormal coordinate 
system fixed to the center 
0 of the unit sphere) is 
formed by perspective 
wroiection throuah 0. , , - 
The sphere undergoes a rigid motion with translational velocity t and rotational velocity a. (A) Transa- 
tional motion field. At every point r, the motion vector is (1/1 ~ / ) [ ( t  . r)r - t], where / R I  is the length of R 
and " . " denotes the inner vector product. Thus, the motion vector is parallel to the great circle passing 
through points FOE and FOC, and its value is inversely proporiiona to the distance to the corresponding 
scene point. (B) Rotational motion field. At every pont r, the motion vector is a X r, where " X "  denotes 
the outer vector product. Thus, the moton vector is parallel to the circle passlng through r perpendcuar 
to a, and it does not depend on the scene in view, (C) General rigid motion field. At every point r, the 
motion vector IS (I// Rl)[(t . r)r - t] - o x r. 
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lem. In many cases, it is possible to obtain 
additional flow information for areas (patch- 
es) in the image. Thus, the input that any 
system can use for further motion processing 
is some partial optical flow information. Our 
analysis is based on a minimum amount of 
knowledge about image motion, namely the 
sign of the projection of optical flow along 
directions where it can be robustly comput- 
ed. These measurements along a set of ap- 
propriately chosen orientations possess a rich 
global structure; they give rise to simple pat- 
terns in the image surface, and the location 
and form of these patterns encode the 3D 
motion parameters independently of the 
depth of the scene in view. The selected 
orientations are defined below. 

Two classes of orientations are defined 
with regard to an axis. Consider an axis s 
passing through the center of a spherical 
eye and cutting the sphere at points N and 

Fig. 2. (A) Longitudinal and latitudinal vector fields 
defined by axis s. At every point r, a longitudinal 
vector has direction (s . r)r - s, and a latitudinal 
vector has direction -s x r. (B) The great circles 
containing s, and s2 are perpendicular to each 
other on two closed second-order curves whose 
form depends on the angle between s, and s,. 
These curves are defined as the set of points r for 
which (s, x r) - (s, x r) = 0 or (s, . r)(s, . r) = 
s, . s,. The s,-longitudinal vectors are perpen- 
dicular to the s2-latitudinal vectors along the great 
circle through s, and s,, defined as (s, x s,) r 
= 0. (C) Positive and negative longitudinal and 
latitudinal image motion measurements. The input 
used in the motion interpretation process is the 
sign of the image motion's value in longitudinal 
and latitudinal directions. 

S. The unit 'vectors tangential to the great 
circles containing s define a direction for 
every point on the retina (Fig. 2A, left). 
These orientations are called s-longitudi- 
nal. Similarlv. the s-latitudinal orientations , . 
are defined as the unit vectors tangential to 
the circles resulting from the intersection of 
the sphere with planes perpendicular to the 
axis s (Fig. 2A, right). 

Some properties of these directions will 
be of use later. Consider the two axes sl  
(NISI) and s, (N,S,). Each axis defines at 
every point a longitudinal and a latitudinal 
direction. The locus of points on the sphere 
where the sl-longitudinal directions are 
perpendicular to the s,-longitudinal direc- 
tions (or where the s,-latitudinal directions 
are perpendicular to the s2-latitudinal direc- 
tions) constitutes two auadratic curves 
whose geometry is explained in Fig. 2B 
(left). Similarly, the longitudinal directions 
of one axis and the latitudinal directions of 
the other axis are perpendicular to each 
other along the great circle defined by sl  
and s, (Fig. 2B, right). 

The structure of the projections of a rigid 
motion field on the s-longitudinal and s- 
latitudinal vectors is examined bv studvine , - 
how the sign of these projections is related 
to the 3D motion, because the sien of flow is - 
the information used as input to the motion 
interpretation process. For this purpose, we 
adopt the following definitions of the direc- 
tions: s (NS)-longitudinal vectors are called 
positive if they point away from N, negative 
if they point away from S, and zero other- 
wise. Similarly, s-latitudinal vectors are 

called positive if their direction is counter- 
clockwise with respect to s, negative if their 
direction is clockwise, and zero otherwise 
(Fig. 2C). Because a rigid motion field is the 
addition of a translational and a rotational 
field, the cases of pure translation and pure 
rotation are first considered separately. 

If the observer moves with a pure trans- 
lation of velocity t, the motion field on the 
sphere is along the direction of the t-longi- 
tudinal vectors (Fig. 1A). If the translational 
motion field of Fig. 1A is projected on the 
s-longitudinal vectors of Fig. 2A, the result- 
ing vectors will be zero, positive, or negative. 
The vectors will be zero on two second-order 
curves (symmetric around the center of the 
sphere) whose shape depends on the angle 
between the vectors t and s (Fig. 2B, left). 
The area inside the curves will contain nee- - 
ative vectors, and the area outside the curves 
will contain positive vectors (Fig. 3A). 

If the observer moves purely rotationally 
with velocity w, the motion field on the 
sphere is along the direction of the w-latitu- 
dinal vectors (Fig. 1B). If the rotational mo- 
tion field of Fig. 1B is projected on the 
s-longitudinal vectors of Fig. 2A, the result- 
ing vectors will be zero, positive, or negative. 
The vectors will be zero on the great circle 
defined by s and w, positive in one hemi- 
sphere, and negative in the other (Fig. 3B). 

If the observer translates with velocity t 
and rotates with velocitv w. the ~roiection , , . , 
of the general motion field on any set of 
s-longitudinal vectors can be classified for - 
parts of the image. If at a longitudinal vec- 
tor the projection of both the translational 

Fig. 3. s-Longitudinal pat- A B c a,  

tern. (A) At every point r, the 
projection of the translational 
motlon vector on the s-Ion- 
gitudlnal vector IS (l/IRI) 
[(t - r)r - t] . [(s . r)r - s] 5-' , ,' - /.' -. '\ 

= ( l / I ~ l ) [ s  t -(s - r)(t \U , /', , . - r)]. It IS zero on the curves / \' 
.- , 
-1 1--', 

s . t = (S . r)(t . r) (as Negative Positive Don't know 
shown in Fig. 2A), negative 
inside the curves, and positive outside the curves. (B) At every point r, the projection of the rotational 
motion vector on the s-longitudinal vector is -(w x r) [(s - r)r - s] = (s x w) . r. It is zero on the 
great circle (s x w) r = 0 passing through s and w, positive in one hemisphere, and negative in 
the other. (C) A general rigid image motion defines a pattern along every s-longitudinal vector field: an 
area of negative values, an area of positive values, and an area of values whose signs are unknown a 
priori because they depend on the scene. 

A B Fig. 4. (A) s-Longitudinal vectors 
and (B) s-latltudlnal vectors In a 
plane, wlth the patterns super- 
Imposed. Note that the "don't 
know" area conta~ns both PSI- 
tlve and negatlve vectors. 

' I  

Negative Positive Don't know 
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and rotational vectors is positive, then the 
projection of the image motion (the sum of 
the translational and rotational vectors) 
will also be positive. Similarly, if the pro- 
iections of both the translational and rota- 
tional vectors on a longitudinal vector at a 
point are negative, the projection of the 
motion vector at this point will also be 
negative. In other words, if the values along 
an s-longitudinal field (Fig. 3, A and B) are 
added, whenever positive and positive come 
together, the result will be positive, and 
whenever negative and negative come to- 
gether, the result will be negative. Howev- 
er, whenever positive and negative come 
together, the result can be either positive or 
negative. In such a case, the sign of the 
projection of the rigid motion vector de- 
pends on the value of the translational and 
rotational vector components, and thus on 
the length of the vectors t and o and the 
depth of the scene. [Actually, this "don't 
know" area also contains information re- 
garding 3D motion and structure (3).] 

The distribution of the sign of image 
motion along the s-longitudinal set of di- 
rections thus defines a pattern on the 
sphere. A pattern like that shown in Fig. 3C 
is obtained for a general rigid motion field 
that arises from a translation t and a rota- 
tion o on an s-longitudinal set of direc- 
tions. This Dattern consists of an area of 
strictly positive values, an area of strictly 
negative values, and an area (covering half 
of the sphere) in which the values are either 
positive or negative depending on the vec- 
tors t and o and the d e ~ t h  of the scene. 
The pattern is characterized by one great 
circle containing o and s and by two qua- 
dratic curves containing the points FOE, 
FOC, N, and S. For every pattern, half of 
the sphere carries valuable information 
(positive or negative) and the other half 
does not: however. the locations of these 
areas are different' for different patterns. 

Fig. 5. A camera mounted on an unmanned ground 
vehicle captured a sequence of images as the vehicle 
moved along rough terrain, thus undergoing continu- 
ously changing rigid motion. (A) One frame of the se- 
quence, with the normal flow field overlaid in red. (6, D, 
and F) Positive (blue) and negative (red) longitudinal 
vectors corresponding to the x, y, and z axes, respec- 
tively. (C, E, and G) Patterns fitted in the final stage after 
all the pattems have been computed for FOE and AOR 

Consequently, every image point has dis- 
tinctive information in some pattern. 

The pattem of Fig. 3C is independent of 
the depth of the scene in view and depends 
only on a subset of the 3D motion param- 
eters. In particular, the great circle is de- 
fined by one rotational parameter and the 
quadratic curve is defined by two transla- 
tional parameters; thus, the pattern is of 
dimension three. In summary, for a rigid 

motion (t,o) for any axis s defining a set of 
directions on the retina, we can identify an 
area of the imaging surface where the sign 
of the motion vector along these directions 
does not depend on the depth of the scene 
in view. If a rigid motion field is projected 
on the s-latitudinal directions [defined by 
the vector s (NS)], another pattern is ob- 
tained, which is analogous to the one of Fig. 
3C. In this case, the translational latitudi- 

at the center of the solution areas shown in (I). In (H), the 
boundaries of the pattems whose intersections are " 
FOE and AOR are superimposed on the image. Be- 
cause measurements are not everywhere available 
(strong spatial gradients appear sparse), a set of pat- 
terns can possibly be fmed with accuracy above the 
threshold of 97% (where accuracy is defined as the ratio 
of the number of successfully fmed pixels to the total 
number of pixels in the pattem). In (I), this fming results in 
solutions for FOE and AOR within two bounded areas 
(red, FOE; green, AOR). The ground truth falls within the 
estimated areas (7). 
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nal flow is separated into positive and neg- 
ative by a great circle, and the rotational 
flow is separated into positive and negative 
by two closed quadratic curves (as in Fig. 
2B) passing from the points AOR, -AOR, 
N ,  and S. 

The  geometric analysis described above 
allows us to formulate the problem of ego- 
motion estimation as a pattern recognition 
problem. Assume that the system has the 
capability of estimating the sign of the ret- 
inal motion along a set of directions defined 
by various s-longitudinal or s-latitudinal 
fields. If the system can locate the patterns 
in each longitudinal and latitudinal vector u 

field, then it has effectively recognized the 
directions t and w 14). The  intersections of 
the quadratic curves of the patterns in Fig. 
3 C  orovide the noints FOE and FOC, and 
the 'intersection; of the great circles of the 
patterns in Fig. 3C provide the points AOR 
and -AOR. Each single pattern provides 
only constraints on the locations of FOE 
and AOR, but a collection of patterns con- 
strains these locations to small areas or even 
to single points. The  amount of information 
available for pattern fitting depends on the 
computational power of the system, and this 
information in turn influences the accuracy 
of the localization of FOE and AOR 15). If 
the system is able to derive optical'flow, 
then it is able to estimate the sign of the 
projection of the flow along any direction, 
and thus for every pattern at every point 
where information is available. If, however, 
the system is less powerful and can only 
compute the motion in one direction (nor- 
mal flow) or the sign of the motion in a few 
directions, then the solution proceeds ex- 
actly as before. The  difference is that for 
each longitudinal or latitudinal set of direc- 
tions, information (positive, negative, or 
zero) is not available at every point of the 
sphere, and consequently the uncertainty 
may be larger and FOE and AOR may be 
obtained only within bounds. 

After the directions of t and w are esti- 
mated from the sign of the flow along vari- 
ous directions, the length of w (that is, the 
exact rotation) can easily be estimated from 
the values of flow measurements (6). Also, 
after deriving 3D motion from the informa- 
tion supplied by the patterns, the system can 
estimate optical flow to derive the 3D scene 
structure and to estimate FOE and AOR 
more accurately. Usually, in a working sys- 
tem, information from other senses is used in 
addition. This information mav come from 
inertial sensors, such as gyros and acceler- 
ometers in robotic svstems or vestibular 
mechanisms in biological systems. 

For the case of a planar retina, the s- 
longitudinal vectors become perpendicular 
to conic sections defined bv the intersection 
of the image plane with a family of cones of 
axis s (Fig. 4A). Analogously, the s-latitu- 

dinal vectors become perpendicular to 
straight lines passing through the intersec- 
tion so of axis s with the image plane (Fig. 
4B). The ereat circle and the second-order - 
curve that characterize the patterns of posi- 
tive and negative vectors become a straight 
line and a conic section, respectively. 

A Dart of the theor!] described here has 
been ikplemented and'tested on  a number 
of calibrated indoor image sequences, with 
excellent results (6). The  solutions for FOE 
and AOR were always bounded areas that 
contained the ground truth (7)  and were 
not larger than 2' of the visual field. Figure 
5 shows an outdoor image sequence exper- 
iment with an unmanned ground vehicle. 
In this exoeriment, the onlv innut was the , 
sign of th' normal flow at image points with 
strong spatial gradients. 

The pattern-matching approach to ego- 
motion estimation does not directly relate to 
traditional computational studies of the per- 
ception of 3D motion. With a few excep- 
tions (a), such studies addressed the problem 
in two steps. In the first step, the optical flow 
was estimated as an a~oroximation to the 

. A  

motion field; in the second step, the 3D 
motion was estimated through a local de- 
composition of the optical flow field (9-1 2).  
In the scheme described here, the retinal 
motion information used is equivalent to the 
sign of the optical flow along some direction. 
In other words, for a vector v on the image, 
the information needed is whether the image 
motion along the line defined by the vector 
v has the sign of v or -v. This is a robust 

property of the optical flow, and, 
as demonstrated here, it is sufficient for the 
task of egomotion perception when used 
with the introduced global constraints. It has 
been argued (1 3) that qualitative estimates 
of optical flow are often sufficient for many 
tasks; for instance, the task of detecting a 
potential crash (14) may not even require a 
precise measurement of the normal cotnpo- 
nent of the flow. As suggested in (IS), "it is 
sufficient that the itnaee motion estimate be 
qualitatively consistent with the perspective 
2D projection of the 'true' 3D velocity field. 
Even estimates that don't correspond to im- 
age velocity, like the ones derived by 
Reichardt's correlation model or equivalent 
energy ~nodels (16), may be acceptable for 
several visual tasks if the estimates are con- 
sistent over the visual field" (pp. 131-132). 
The  pattern-based approach to the problem 
of egomotion estimation demonstrates the 
feasibility of such ideas about qualitative vi- 
sual motion analysis. The ideas described 
here ma\] relate to neuroscience exneriments 
In which primates were found to have cells 
that respond to patterns of visual motion 
(17), and psychologists may find a link be- 
tween the patterns described here and the 
transformational invariants in Gibson's the- 
ory (18) of direct perception. 
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