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carbon-hydrogen (C^H) and carbon-carbon 
(C-C) bonds in alkanes or alkyl groups, where 
current techniques typically require these 
groups to be considered untouchable to selec
tive synthetic reagents. Although the neces
sity for transforming these compounds and 
groups can sometimes be avoided by altering 
the choice of starting materials, the ubiqui
tous nature of saturated C-H bonds (in hy
drocarbon fuels and the alkyl groups of useful 
organic molecules) implies that the ability to 

Unusually Mild and Selective Hydrocarbon C-H 
Bond Activation with Positively Charged 

Iridium(lll) Complexes 
Bruce A. Arndtsen and Robert G. Bergman* 

Certain transition metal complexes can react to break normally inert carbon-hydrogen 
(C-H) bonds, but these metal-based processes typically require photochemistry or ele
vated temperatures. In addition, most are unselective toward complicated functionalized 
substrates, which has limited their synthetic usefulness. The cationic iridium complex 
Cp*(P(CH3)3)lr(CH3)(CICH2CI)+BArr [Cp* = T!5-C5(CH3)5 , BArf = B(3,5-C6H3(CF3)2)4] can 
thermally activate methane and terminal alkanes at unprecedentedly mild temperatures 
(10°C). This complex will also induce C-H activation reactions in various functionalized 
substrates at ambient temperatures. High steric and electronic selectivity is observed, 
leading invariably to only one reaction product; the initial C-H activation reaction is 
typically followed by rapid metal-based rearrangements (that is, functionalization). 



selectively convert alkane C-H bonds into 
other functional groups would not only great- 
ly enhance synthetic capabilities but would 
also significantly multiply the potential uses 
of hydrocarbon feedstocks. Our ability to ma- 
nipulate C-H bonds has relnai~led limited, 
however, because of the high homolytic bond 
strengths and low polarity of these bonds, 
which have made them inert to all but the 
most reactive substances (such as highly reac- 
tive organic free radicals, carbenes, and super 
acids). Under such reaction conditions, other 
functionalities either present or generated in 
the substrate car1 undergo unwanted transfor- 
mation, so the selective f~~nctionalization of 
alkanes has remained difficult to achieve. 

Studies in our research group (1) as well 
as those of Graham (2 )  and Jones (3)  more 
than a decade ago showed that certain tram 

u 

sition metal complexes can react stoichio- 
metrically with alkalnes to break their C-H 
bonds, suggesting that metal complexes 
might be used to effect alkane f~~nctionalila- 
tion. Since then, several general classes of 
metal-based C-H bond acylvation reactions 
have emerged (4). T h e  first to be identified, 
typically occurring a i t h  "late" transition 
metals (those located o n  the right side of the 
transition series in the periodic table), oxi- 
datively add a C-H bond to a lnetal center 
to form (hydrido)(alkyl) nletal cotnplexes 
(Eq. 1 ,  where L is a ligand o n  the lnetal and 
R is an  alkyl group) (1-3, 5, 6).  Recent 

R-H 
LnM - L + L,,.>M - 

Oxidative 
addition 

evidence suggests that these reactions often 
proceed through short-lived "alkane com- 
plex" intermediates in which the alkane is 

Fig. 1. An ORTEP dagram of complex 2 (borane 
counter~on removed for clar~ty). Selected bond 
lengths and angles: Ir-P: 2.276 (3) A; Ir-CQ: 1.857 
k; lr-C(15):2.105 (1 2) k; Ir-Cl(1): 2.462 (3) A; Cl(1)- 
C(l4): I ,820 (I  5) A; C(l4)-Cl(2): 1.730 (1 5) k; P(1)- 
lr-C(15): 85.4 (3)"; P(1)-lr-C(1): 88.97 (1 3)"; C(15)- 
Ir-Cl(1): 92.2 (4)"; Cl(1)-C(14)-Cl(2): 110.7 (8)". 

weakly associated \ v ~ t h  the metal center (7). 
In a second process, no\v referred to as 
a-bond metathes~s (Eq. 2),  the alkane C-H 
bond adds across a bond to an  electronoslt~ve 
metal (usually a n  "early" metal, lanthanide 
or actinide), leadine to a different hvdrocar- 
bon and a new me;al alkyl complex' (8). Of 
these t\vo nrocesses, the earlv metal a-bond 
metathesis reactions typically proceed under 
milder conditions, allowing the tlnerlnal ac- 
tivation of methane and terminal alkanes at 
temperatures occasionally as lo\v as 45"C, 
and display a higher degree of selectivity. 

W e  recently reported a n  unusual example 
of alkane activation bv a late metal IIr(II1)) , ~ , ,  

complex that in its ovkrall character is more 
closelv related to earlv-metal a-bond me- 
tathes'is processes: the 'reaction at 45°C of 
Cp"'(Pblej)IrMe(OTf) (1 )  (Cp'!' = q'- 
C j M e j ,  Me = CH,, and OTf = OS0,CF3)  
with alkalnes (R-H) to eliminate methane 
and generate Cp'g(Pble3)IrR(OTf) (9).  The  
mild conditions for this C-H activation sue- - 
gests that in this system an unsaturated Ir 
fragment can be formed readily, probably 
through loss of the OTf- ("triflate") ligand. 
W e  report here the results of our effort to 
prepare and isolate this presumed intermedi- 
ate by exchange of triflate with the noncoor- 
dinating counterion RArfP[RArf = B(3,5- 
C H (CF3)2)4]. This work has led to tlne gen- 

, j  
eratlon of Cp"(PMe,)IrMe(ClCH,Cl)+ - 
BAriP ( 2 ) ,  which undergoes an unprece- 

dented C-H activation of methane and other 
organic colnpounds belou~ room temperature. 
In addition to its high activity, 2 also displays 
significant selectivities in the C-H bond that 
is activated, and can form single products 
fro111 complicated substrates. 

T h e  addition of Na+BArf- (10) to an  
orange CH,Cl, solution of 1 leads to grad- 
ual darkening of the  nlixture over the  
course of 30  lnin and the  precipitation of 
NaOTf. Analysis of the reaction mixture by 
proton nuclear magnetic resonance ( 'H 
NMR)  spectrometry shows the  quantitative 
conversio~l of I to the tetraarylborate salt 2 
(Eq. 3 and Fig. 1) .  Attempts to precipitate 
this polar compound with pentane or di- 
ethyl ether led to the isolation of cationic 
olefin hydride complexes (see below), sug- 
gesting its ability to activate aliphatic C-H 
bonds. Careful evaporation of the CH,Cl, 
solution of 2 allowed its isolation as an  
orange solid, although prolonged exposure 
to reduced pressures or room temperature 
resulted in decomposition to a number of 
uncharacterized compounds. 

Examination of the 'H Nb1R spectrum of 
isolated 2 in CD,Cl, sho\ved that it copre- 
cipitates with two CH,Clz molecules [chern- 
ical shift 6 5.32 (4H)l which exchange rap- 
idly with CD2Cl, at -90°C. T h e  spectra of 
both tetraarylborate ['H NMR 6 7.72 (s, 
8 H ) ,  6 7.56 (s, 4H) ;  '" NMR 6 -60.91 (s)] 
and Cp"(Pble,)IrMe [ 'H NMR 6 1.68 
(15H),  6 1.58 (9H) ,  6 1.23 (3H);  "P NMR 
6 -23.0 (s)] fragments are relatively simple 
even at low temperature. These observations 
suggest that if there is any association of a 
ligand (such as CH,Cl, or BArrP) with the  
prochiral Cp"(Pble,)IrMe cation, adduct 
formation lnust be rapid and reversible on 
the  NMR time scale in solution. 

Co~nplete  characterization of 2 in the 
solici state was afforded by x-ray diffraction. 
Cooling a colncentrated CH,Cl, solution of 
2 to -40°C for 1 day led to the  precipita- 
tion of orange crystals that were unstable at 
tenlperatures above 0°C. Collection and 
careful mounting of the  crystals at tempera- 
tures lon~er than this, followed by a low- 
temperature x-ray diffraction study, con- 
firmed the  presence of two molecules of 
CH2C12 per Ir complex in the  crystal lattice, 
with one of these molecules bound to tlne 

Fig. 2. Alkane and arene C-H bond actvat~on by 2 
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metal center (Fig. 1). The conlplex has a 
pseudo three-legged piano stool geometry, 
with a chloride-bound CH2Clz molecule oc- 
cupying one site. Both the borane and sec- 
ond CH,Cl, fragment are located well out- 
side bonding distances to the Ir cation. 

Because of its poor ligating ability, 
CH,Cl, colnplexes are relatively rare, and to 
our knowledge 2 represents the first structur- 
ally characterized example of an TI-bound 
CH,Cl, unit to a transition metal (1 1) .  The 
weak interaction between CH,Cl, and Ir is 
illustrated by a long Is-C1 distance [2.462(3) 
A;  numbers in parentheses are in standard 
errors in the last digit or digits]. Consist- 
ent with this, the effect on the CH,Cl, 
unit upon bonding is minimal. There ap- 
pears to be a slight lengthening i>f the 
C(14)-Cl(1) distance [1.820 (15) A] and 
the Cl(1)-C(14)-Cl(2) bond angle of 
110.7(8)" is normal. These values can be 
compared to the spectroscopically determined 
(1 2) values for gas phase CH2Clz,  which has 
a C-C1 bond length of 1.772 A and a 
C1-C-C1 angle of 11 1.8". 

Complex 2 is extrelnely reactive toward 
hydrocarbon C-H bonds. The addition of 
benzene to a CH,Cl, solution of 2 results in 
ilnrnediate effervescence, due to methane 
loss, and the generation of the phenyl-sub- 
stituted colnplex 5 (Fig. 2).  This process 
proceeds rapidly even at temperatures as low 
as -30°C, which is substantially faster than 

the analogous reaction of triflate cornplex 1, 
which reacts in a sinlilar nlallner with arenes 
at a reasonable rate only above 10°C. Com- 
plex 2 also undergoes below-ambient tem- 
perature methane activation, as demonstrat- 
ed by the incorporation of label from 13CH4 
at 10°C (13). Terlninal alkanes such as pen- 
tane and methylcyclohexane can be activat- 
ed over the course of minutes at room tem- 
perature to ultinlately generate ternlinal ole- 
fin complexes, a process which likely pro- 
ceeds through initial C-H activation 
followed by rapid P-hydride elimination. 

The activation of hydrocarbons by 2 rep- 
resents the most facile general C-H activa- 
tion by a metal conlplex observed to date. 
The only other stoichiolnetric thermal al- 
kane activation at ambient temperatures we 
are aware of is that of Wayland's tethered 
bis-Rh(I1) porphyrin complex, which reacts 
at appreciable rates only with methane (14). 
Other late metal unsaturated fragments, 
such as Cp(L)Ir, Cp(L)Rh, or Tp(L)Rh, ox- 
idativelv add C-H bonds extremelv ranidlv; 

, A ,  

hon.evei these all require generation by 
high-energy ther~nal or photochelnical 
events (1-5, 7). We believe the high activ- 
ity of 2 is due to the lability of the CH,Cl, 
lieand, whose dissociation allows low-tem- " ,  

perature access to the 16-electron Ir cation 7 
(Fig. 3) ,  although the exact mechanism of 
the reaction (whether it involves initial as- 
sociative or dissociative replacement of 

R-H\ 
(L = CO. MeCN ) 

CH,Cl,, and oxidative addition-reductive 
elimination or a concerted 4-center transi- 
tion state for the C-H activation step) are 
still issues that must be resolved by further 
experimentation. The weak interaction be- 
tween Ir and CH,Cl, can be confirmed by 
more conventional transformations: the co- 
ordinated CH,Cl, ligand undergoes imme- 
diate disnlacement at -80°C bv a varietv of 
other daiive ligands, such as co and aceto- 
nitrile, generating adducts that are unreac- 
tive toward alkanes. 

With Inore colnplicated molecules, prelim- 
inary experiments have demonstrated that, 
even in the presence of other functionalities, 
complex 2 reacts cleanly at ambient temper- 
atures to break specific C-H bonds. The ac- 
tivation is followed invariably by rapid rear- 
rangement or secondary coordination to the 
metal center to form saturated 18-electron 
complexes. For example, diethyl ether (which 
does not react with triflate I at 25°C) reacts 
with the CH,Cl, complex 2 at room temper- 
ature in CH,Cl, in a manner similar to its 
reaction with terminal alkanes, leading to the 
vinyl ether complex 4 (Fig. 4). Reaction with 
methyl acetate gives acetoxy~nethylene com- 
plex 8, a rare example of a transformation in 
which a methvl hvdroeen in a carboxvlic acid 
methyl ester, ' ratl~er Yhan the subs;antially 
Inore acidic a-carbonyl hydrogen, is selective- 
ly activated. This reaction suggests a strong 
electronic influence on the C-H activation, 
in addition to the steric requirements previ- 
ously observed, with the Inore electron-rich 
site being exclusively activated. 

Metathesis of the triflate in 1 with the 
noncoordinating counterion BAr,- leads to 
the generation of a highly reactive C-H 
activating, CH,Cl,-solvated Ir cation. These 
C-H activations proceed with high steric 
and electronic selectivities and are often fol- 
lowed by metal-based rearrangements, all of 
which revresent further stens toward the se- 
lective low-temperature filnctionalization of 
organic substrates throueh C-H bond acti- - - 
vation. The high activity of complex 2 is 
undoubtedlv related to the labilitv of the 
CH,Cl, unit, suggesting that Inore weakly 
solvated forms of [Cp'"L)Ir(CH,)lf (such as 
by hydrocarbons) should show even higher 
reactivity ton~ard organic compounds. 

Fig. 3. Proposed mechanisms for C-H bond act~vation by 2. 
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Direct Perception of Three-Dimensional Motion 
from Patterns of Visual Motion 

Cornelia Fermiiller and Yiannis Aloimonos* 

Measurements of retinal motion along a set of predetermined orientations on the retina 
of a moving system give rise to global patterns. Because the form and location of these 
patterns depend purely on three-dimensional (3D) motion, the effects of 3D motion and 
scene structure on image motion can be globally separated. The patterns are founded on 
easily derivable image measurements that depend only on the sign of image motion and 
do not require information about optical flow. The computational theory presented here 
explains how the self-motion of a system can be estimated by locating these patterns. 

T o  detect the image of movement is the 
u 

first task of all systems with vision, and to 
reach an understanding of movement is a 
primary goal of all later perceptual analysis 
( I ) ,  for animals as well as in robots. Al- 
though an organism or a mechanism may 
move in a nonrigid manner as a whole, with 
the head, arms, legs, wings, or wheels under- 
gang different mot~ons, the eyes move rigid- 
lv-that is, as a sum of an instantaneous trans- 
latlon and rotation. Thus, the images per- 
ceived on the retina of the eve (or on the film 
in a camera) originate from a rigid motion. 

The fundamental, abstract geometric 
concept used to descrlbe the computational 
analysis of visual motlon is that of the two- 
dimensional (2D) motion field: As a system 
moves in its environment, every point of the 
environment has a velocitv vector with re- 
spect to the system. The prk>jection of these 
3D veloc~tv vectors on the retina of the 
system's eye constitutes the so-called motion 
field. This field denends on the 3D motlon 
and the structure of the scene in view. If a 
snherlcal eve moves with a translation t ,  the 
kot lon field is along the great circles con- 
tainlng the vector t (Fig. I A ) ,  pointing away 
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from the focus of expansion (FOE) and to- 
ward the focus of contraction (FOC). The 
ooints FOE and FOC are the ooints where t 
cuts the image sphere. If the eye rotates wlth 
a velocity w (Flg. IB),  the motion field is 
along the clrcles resulting from the intersec- 
tion of the image sphere with planes perpen- 
dicular to the rotation axis: this axis cuts the 
sphere at points AOR (axis of rotation) and 
-AOR. For general rigid motion, the mo- 
tion field on the sphere is the addition of a 
translational fleld and a rotat~onal field (Fig. 

u 

1C). In this case, the motion fleld does not 
have a simple structure, and it becomes dif- 
flcult to locate the polnts FOE and AOR, 
that IS, to solve the problem of determining 
a system's 3D lnotlon (its egornotlon) with 
the 2D motion field as Input (2 ) .  

T h ~ s  difficultv is comnounded because 
the lnformatlon tilat can b i  derived from the 
sequence of images sensed by the moving 
retina is not the exact projection of the 3D 
motion field, but rather onlv information 
about the movement of light patterns. The 
exact movement of everv ooint on the image , u 

is termed the optical flow field. In general, 
accurate values of the o ~ t l c a l  flow f~eld are 
not computable; the so-called normal flow, 
the component perpendicular to the edges, 1s 
the only component of the optical flow that 
is well defined on the basis of local informa- 
tion. This is the well-known aperture prob- 

Fig. 1. Motion fields on a A A B 4 c 
spherical ret~na. The im- 
age r of a scene point 
w~th position vector R 
(with regard to an or- 
thonormal coordinate 
system fixed to the center 
0 of the unit sphere) is 
formed by perspective 
wroiect~on throuah 0. , , - 
The sphere undergoes a rigid motion with translational velocity t and rotational velocity a. (A) Transa- 
tional motion field. At every point r, the motion vector is (1/1 ~ / ) [ ( t  . r)r - t], where / R I  is the length of R 
and " . " denotes the inner vector product. Thus, the motion vector is parallel to the great circle passing 
through points FOE and FOC, and its value is inversely proporiiona to the distance to the corresponding 
scene point. (B) Rotational motion field. At every point r, the motion vector is a X r, where " X "  denotes 
the outer vector product. Thus, the motion vector is parallel to the circle passing through r perpendicular 
to a, and it does not depend on the scene in view, (C) General rigid motion field. At every point r, the 
motion vector is (I// Rl)[(t . r)r - t] - o x r. 
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