
Pineal Serotonin A/-Acetyl transfera~e: regulation are not known, primarily because 
the complementary DNA (cDNA) encod- Expression Cloning and Molecular Analysis ing AA-NAT was not formerly available. 

We cloned AA-NAT by using a cDNA 
Steven L. Coon, Patrick H. Roseboom, Ruben Baler, expression library (8, 9). Pools of clones 

Joan L. Weller, M. A. A. Namboodiri, Eugene V. Koonin, were transfected into COS-7 cells that were 

David C. Klein* screened for AA-NAT expression by mea- 
suring acetylation of the arylalkylamine 
5-methoxytryptamine and of the arylamine 

Pineal serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, or AA-NAT) phenetidine. This screening identified an 
generates the large circadian rhythm in melatonin, the hormone that coordinates daily and AA-NAT clone (clone 87) as indicated by 
seasonal physiology in some mammals. Complementary DNA encoding ovine AA-NAT substrate specificity of the encoded protein 
was cloned. The abundance of AA-NAT messenger RNA (mRNA) during the day was high (Fig. 1) (10-12). 
in the ovine pineal gland and somewhat lower in retina. AA-NAT mRNA was found The largest amounts of ovine AA-NAT 
unexpectedly in the pituitary gland and in some brain regions. The night-to-day ratio of mRNA were found in the pineal gland (Fig. 
ovine pineal AA-NAT mRNA is less than 2. In contrast, the ratio exceeds 150 in rats. 2). One-quarter as much was found in the 
AA-NAT represents a family within a large superfamily of acetyltransferases. retina, consistent with reports of AA-NAT 

activity in chicken and frog retinas and 
human retinoblastoma Y79 cells (6, 13). 
We also found that the AA-NAT gene was 

Amounts of circulating melatonin increase requires new gene expression, new protein expressed at low levels in ovine brain and 
10-fold at night in all vertebrates. This synthesis, and stabilization (I). However, pituitary gland (Fig. 2). This led to the 
rhythm is generated by a variation in the the precise molecular details of AA-NAT finding of AA-NAT activity in the retina, 
activity of AA-NAT (E.C. 2.3.1.87), the 
penultimate enzyme in melatonin synthesis 
(serotonin to N-acetylserotonin to rnelato- Fig- 1. Subdrates~ecificity of partially Ovine AA-NAT Clone 87 

nin) ( I  ). The nocturnal increase in pineal pufified Ovine AA-NAT ("1 'Ompared 4 0 0 , , I I ,  3 0 1 I I  
H 5HT with a hornogenate of COS-7 cells ex- 350 - - 5MT 
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AA-NAT activity also markedly decreases pressing clone 87, Acetylation was w PEA 25 -r-r PEA 
serotonin (1-3). The rhythm in melatonin is determined in 20-pl assays contain- 300- - PHEN A-A PHEN 

essential for seasonal reproduction (4), mod- ing the indicated concentration of 3 
ulates the function of the circadian clock in amine and 40 p~ [14c]acety1 COA (60 5 the suprachiasmatic nucleus (SCN), and in- Ci/mol). [14C]Acetylated 5-methoxy- 200- 
fluences activity and sleep (5). tryptamine (5MT), tryptarnine, phen- E 

AA-NAT is expressed primarily in the eth~lamine (PEA), and ~henetidine $ I 5 O -  1 0  
pineal gland and to a variable degree in the (PHEN) were e*ract* into chloro- 

retinas of some vertebrates (6). The enzyme form (2). [14C]Ace@lated rnescaline~ ,_Tyramine 

serotonin (5HT), and tyrarnine were is rapidly inactivated (half-time, or t,,, 2: 3 %Mescaline 
resolved by thin-layer chrornatogra- 

min) when animals are exposed to light at 
phy with acetylated 

night (1 ). Arylalkylamines are strongly pre- (27). Radioactivity was determined by 0 2 4 6 8 1 0  0 2 4  6 8 1 0  
ferred as substrates over other amines (7). scintillation counting. Different v,, Substrate concentration ( m ~ )  
Regulation of AA-NAT activity is con- values (enzyme activity) reflect different levels of enrichment; enzyme activity is expressed in nanornoles of 
trolled by a complex system (I )  that in- acetylated product per milligram of protein per hour. 
cludes the circadian oscillator in the SCN. 
At night, the SCN transmits signals to the Fig. 2 Extrapineal expression 
pineal gland by a neural circuit passing of the gene encoding W-NAT. 0 * d &  +pe,, 5 

e"'. 
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Light acts on this system through a retinal- 1-cm cubes were prepared, 
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to-SCN projection to reset the SCN clock and cubes were rapidly frozen. 
4 1 . 4  

and to gate transmission to the pineal Total RNA was e*ract*l and AA-NAT~ 
gland. SCN-generated signals stimulate the (RNA) blot 

release of norepinephrine, which acts pe~Oformed with 
primed cDNA (16). Each lane through a- and P-adrenergic receptors to was loaded with 20 pg of total 

elevate pineal cyclic adenosine monophos- RNA, except the lane marked 
B 

phate and calcium. Studies in rats indicate gll/lOOpineal,H whichreceived AA-NAT, 4 1 . 4  
that these second messengers elevate en- 0.2 pg.  lots were probed with 
zyme activity through a mechanism that a full-length cDNA insert (960 

S. L. Coon, P. H. Roseboom, R. Baler, J. L. Weller, D. C. 
Klein. Section on Neuroendocrinology, Laboratory of De- 
velopmental Neurobiology, National Institute of Child 
Health and Human Development, National Institutes of 
Health, Bethesda. MD 20892, USA. 
M. A. A. Namboodiri, Department of Biology, George- 
town University, Washington, D. C. 20057, USA. 
E. V. Koonin, National Center for Biotechnology Informa- 
tion, National Library of Medicine, Bethesda, MD 20894, 
USA. 

*To whom correspondence should be addressed. 

bp) from clone 87, stripped, 
and reprobed with G3PDH C 
cDNA to monitor loading and 
degradation. Similar results G3PDHb 
were obtained in two additional 
studies. Olf. lobe, olfactory 
lobe; Sm. intest., small intes- 
tine. Size markers are shown on the right in kilobases. (A) A 12-hour autoradiographic image of the blot probed 
with the insert from clone 87. No other bands of radioactivity were detected. (B) A 96-hour autoradiographic 
image of the same blot. Faint 3- and 5-kb bands were detected inconsistently in pineal glands and retinas (not 
shown). (C) A 12-hour Phosphorlmager exposure of the blot probed with G3PDH. 
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pituitary, and olfactory lobe (0.5, 0.2, and 
0.1 nmol of acetylated product per milli- 
gram of protein per hour, respectively) (14). 
The discrepancy between amounts of AA- 
NAT mRNA and enzyme activity in ex- 
trapineal sites may reflect different levels of 
translation or posttranslational activation. 
Extrapineal AA-NAT is of special interest 
because it could influence serotonin con- 
centrations and metabolism. 

Ovine pineal AA-NAT mRNA in- 
creased less than twofold at night (Fig. 3A), 
which was much smaller than the nocturnal 
sevenfold increase in AA-NAT activity 
(Fig. 3B). In rats, pineal AA-NAT mRNA 
was very low during the day and increased 
more than 150-fold at night (Fig. 3A) (15, 
16), similar to the increase in enzyme ac- 
tivity (1). The rat pineal AA-NAT mRNA 
rhythm is circadian and is regulated by the 

same neural pathway that controls enzyme 
activity (1 5). 

These observations indicate that post- 
transcriptional mechanisms dominate regu- 
lation of AA-NAT activity in sheep, where- 
as in rats both transcriptional and posttran- 
scriptional mechanisms are involved (1, 17, 
18). The involvement of different molecular 
strategies among species to increase amounts 
of melatonin at night underscores the bio- 
logical importance of this signal. These dif- 
ferent regulatory mechanisms may explain 
why in sheep melatonin increases at night 
immediately after exposure to darkness, 
whereas in rats there is a delay (19). This 
delay could be linked to the time required to 
elevate AA-NAT mRNA. 

Clone 87 contains a putative 621-base 
pair (bp) open reading frame (ORF) encod- 
ing a 23.1-kD protein (Fig. 4A). The pre- 

Fig. 3. Day and night studies of pineal AA-NAT mRNA. 
(A) Northern blot analysis. Day pineal glands were re- 
moved at -1 200 hours and night pineal glands at -2400 
hours. Sheep were maintained outdoors (8). Rats were 
housed in an automatically regulated 14: 10 light-dark 
cycle (lights on at 0500 hours). Night samples were ob- 
tained from animals killed in dim red light. Northern blot 
analysis was as in Fig. 2. A rat cDNA probe was used to 
probe the rat blot (28). (B) A 24-hour study of ovine 
AA-NAT activity and mRNA. Enzyme activity was mea- 
sured as described (2). The value at 1200 hours was 7.4 
nmol of acetylated product per milligram of protein per 
hour. AA-NAT mRNA was analyzed by Northern blot; 
values were normalized to G3PDH mRNA. Enzyme ac- 
tivity and mRNA values are expressed relative to values at 
1200 hours. Each point represents the average of en- 
zyme activity or mRNA in two or three pineal glands; 
individual values were within 20% of the value given. 
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dicted size was confirmed by expression of 
clone 87 (20). Putative regulation sites exist 
(Fig. 4A): the two cyclic nucleotide-de- 
pendent protein kinase phosphorylation 
sites may be involved in rapid inactivation 
(1, 17); the two protein kinase C phosphor- 
ylation sites may mediate the effects of cal- 
cium (21), and one or more of the seven 
cysteines may be involved in activation and 
inactivation (18). 

The AA-NAT amino acid sequence was 
not strongly similar to any functionally 
characterized protein in the databases; how- 
ever, it was statistically similar to an un- 
characterized, hypothetical yeast protein 
(YD8554.04~) (22). Marginal similarity was 
also found to Streptomyces lipmanii puromy- 
cin acetyltransferase (PUAC-STRLP) and 
a hypothetical protein (ORF5R46) (Fig. 
4B). The similar regions included the por- 
tion of AA-NAT that aligned with 
YD8554.04c, which suggests that these re- 
gions may be functionally relevant. This 
interpretation is supported by the conserva- 
tion in PUAC-STRLP and AA-NAT of 
two essential motifs (designated A and B in 
Fig. 4B) found in several acetyltransferases 
(23). These motifs may function in acetyl 
coenzyme A (CoA) binding, acetyl group 
transfer, or both (24). 

We searched for other AA-NAT-related 
proteins by using a block that encompasses 
motif A from the alignments of AA-NAT 
with the three proteins described above (25). 
Of the 79 related proteins identified in this 
search, 30 are acetyltransferases and the re- 
mainder are uncharacterized, hypothetical 
proteins. Therefore, it appears that motif A is 
a reliable identifier of an acetyltransferase 
superfamily. Subsequent multiple-alignment 
analysis confirmed the statistical significance 
of the similarity between AA-NAT and other 
acetyltransferases and identified additional re- 

A 
1 MSTPSVHCLK PSPLHLPSGI PGSPGRQRRH TLPANEFRCL TPEDAAGVFE IEREAFISVS GNCPLNLDEV QHFLTLCPEL SLGWFVEGRL VAFIIG$LWD 

Motif A Motif B * 
101 EERLTQESLn LHRPRGHSAH LHRLAVDRgF RQQGKGSVLL WRYLHHVGAQ PAVRRAVLMC EDALVPFYQR FGPBPAGPCA IWGSLTFTE MHC LRGHAA LRRN DR 

7, ii ii 
B 

Motif A 
Consensus 

Motif B 
u..UOU.P.uQ..OUO.$.W U.W..U(KI.... 

AA-NAT (U296631 36 FRCLTPEDARGVFEIEREAF 17 LTLCPELSLGWEV 3 LVAFIIGSLWDEERLTQES 1 HRPRGHSAH 0 LHXAVDRSPRQQQKQSVLL 24 VPFYQRPOPHPAG 30 :. **  ::::* ::* + ++I+  + *: *:: +:+: :. **:: : . + :*:: : : :::*t :I**:*:** : 
YD8554.04~ (S498261 13 IRPLIIEDLKQILNLESQGF 14 LINCPELCSGLFI 12 LIGHIMGTKIPHEYITIESMG 1 LQVES-SNH 2 IHSWIKOEYQKKNLATLLL 24 IPFYERVOFKIIA 30 
PUAC-STRLP (PI34291 93 RMRELSGSRLRRWEGLLA 9 HRPKEPAWE 0 LATVQVSPDHQGKQLQSAW 23 LPFYERLEPTWA 19 
AAC6-CITDI (P10051 I 78 LHPLVVRPDYQNKOIQKILL 52 YEFYQKNQYYIVG 22 
RIMI-ECOLI (PO94531 65 LFNIAVDPDYQRQOLQRW 26 IALXESLQFNEAT 37 
SAT4lCAMCO (UO1945) 98 IEDIAVCKDPRGQOIQSALI 25 CIMHNCQFKIGS 23 
AAC1-PSEAU (P231811 107 IYDIJWSGEHRRCSIATALI 26 VALXT-IREEV 11 
YJHQ-ECOLI (P393681 81 IAPLIVIPEYQGMQVQGRLI 20 ATYYPRHQFEPCA 47 
ORF5/R46 (507658) 92 LH~VRRTHAGRQVSSALI 23 RGLYERLOFTHVD 15 
ORF/STAAU (S26352) 35 LHSIQ4LPNYQDKGYGSKLL 26 CHVYEKLGGKNDY 15 

Fig. 4. Amino acid sequence and conserved motifs of ovine AA-NAT. (A) 
Deduced amino acid sequence (GenBank accession number U29663) (29). 
Putative phosphorylation sites: ', cyclic nucleotide-dependent; #, protein 
kinase C; +, casein kinase I I .  The two conserved motifs are bold and under- 
lined. (B) Alignment of the AA-NAT amino acid sequence with sequences of 
known and putative acetyltransferases (25). The number of amino acid resi- 
dues from the protein termini and between the aligned blocks are indicated. 
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Identities between AA-NAT and YD8554.04~ are indicated by asterisks; sim- 
ilarities, by colons. Consensus residues are conserved in most aligned se- 
quences (bold residues conform to the consensus): U, bulky hydrophobic 
residue ( I ,  L, V, M, F, Y, W); 0, small residue (G, A, S); $, S or T; dot, any 
residue. Single-letter abbreviations for the amino acid residues are as follows: 
A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I ,  Ile; K, Lys; L, Leu; M,  
Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. 
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gions of limited similarity between AA-N AT, 
YD8554.04c, and PUAC_STRLP (Fig. 4B) 
(25), 

Although motifs A and B define a large 
acetyltransferase superfamily, this superfam-
ily excludes arylamine N-acetyltransferase 
and many other acetyltransferases (23, 26). 
AA-NAT appears to represent a new family 
within this superfamily because there are no 
closely related proteins in the databases. 
The AA-NAT family may have emerged 
relatively late in evolution, perhaps in as­
sociation with the evolution of melatonin 
as a photochemical signal. The cloning of 
AA-NAT opens the door to research on 
the function of extrapineal AA-NAT and 
should lead to the resolution of many long­
standing issues in research on circadian 
rhythms and photoperiodism. 
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