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The arginine residue at position 586 of the GluR-B subunit renders heteromeric a-amino-
3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-sensitive glutamate receptor chan-
nels impermeable to calcium. The codon for this arginine is introduced at the precursor
messenger RNA (pre-mRNA) stage by site-selective adenosine editing of a glutamine
codon. Heterozygous mice engineered by gene targeting to harbor an editing-incompe-
tent GIuR-B allele synthesized unedited GluR-B subunits and, in principal neurons and
interneurons, expressed AMPA receptors with increased calcium permeability. These
mice developed seizures and died by 3 weeks of age, showing that GluR-B pre-mRNA

editing is essential for brain function.

Gilutamate receptors sensitive to AMPA
are ligand-activated cation channels that
mediate the fast component of excitatory
postsynaptic currents in central neurons
(1). These channels are assembled from four
related subunits (GluR-A to GluR-D, or
GluR1 to GluR4) (2), with the GluR-B
subunit rendering the channel almost im-
permeable to Ca?* (3). The molecular de-
terminant for this dominant property of
GIuR-B was traced to the arginine (R) res-
idue at position 586 of the mature subunit,
which lies within the pore-forming segment
M2 (4). This arginine is not gene encoded
(5) but is posttranscriptionally introduced
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into GluR-B pre-mRNA (5, 6) by site-
selective adenosine deamination, which
leads to the change of a CAA glutamine
(Q) codon to a CIG codon for arginine in
>99% of mRNA molecules (5-7). Termed
Q/R site editing, this nuclear process de-
pends on a double-stranded RNA structure
(6) formed in the pre-mRNA by the editing
site in exon 11 and the editing site comple-
mentary sequence (ECS) in intron 11 (8).
To investigate in an animal model the rel-
evance of this process for central nervous
system (CNS) physiology, we targeted in-
tron 11 of the GluR-B gene in mouse em-
bryonic stem (ES) cells (9) for replacement
of the ECS element (10) by loxP (11, 12)
(Fig. 1), and then injected correctly engi-
neered cells into C57BL/6 blastocysts. One
of several resultant chimeric animals
showed vertical transmission of the GluR-
BAECS jllele in a Mendelian fashion (10),
indicating that the allele did not adversely
affect embryonic development.

In brains of GluR-B*/AECS mice, the
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GIuR-B2ECS allele was expressed with its
transcripts remaining unedited at the Q/R
site, demonstrated by analysis of allele-spe-
cific  reverse transcription—polymerase
chain reaction (RT-PCR) products (13) of
partially spliced GluR-B pre-mRNA (Fig.
2A). The sequence and hybridization anal-
ysis of RT-PCR products revealed that pre-
mRNA derived from the wild-type allele
was edited to the expected extent of 83%
(6, 13), whereas pre-mRNA from the GluR-
BAECS gllele, in which the ECS element was
replaced by loxP, was not edited at the Q/R
site. These data showed that the ECS ele-
ment is indispensable for Q/R site editing in
vivo, as previously established for in vitro
editing (6, 7). The RT-PCR analysis further
indicated that GIuR-BAES pre-mRNA se-
quences were amplified more efficiently
than GIluR-B* pre-mRNA (Fig. 2A). Quan-
tification with primers that amplify DNA
fragments of identical size for both allelic
pre-mRNAs (13) revealed that premature
transcripts of the GluR-BAF<S allele are en-
riched approximately fivefold in the nucle-
us as compared with premature transcripts
of the GIluR-B™ allele. The nuclear accumu-
lation of GluR-BAESS pre-mRNA was at-
tributable to a reduced splicing efficiency of
the sequence-modified intron 11, because
ribonuclease (RNase) protection with a
suitable intron probe (14) revealed in-
creased amounts of the loxP-containing in-
tron 11 relative to the unmodified intron
(Fig. 2B). Consequently, the amounts of
cytoplasmic mRNA corresponding to the
two alleles were imbalanced, with mature
cytoplasmic transcripts unedited at the Q/R
site constituting only 25 * 3% (mean =
SEM, n = 8), rather than the theoretically
expected 50%, of the GluR-B mRNA pop-
ulation. This situation reflects an overall
decrease in GluR-B mRNA abundance,
and, indeed, a reduction of ~30% in the
amount of GluR-B mRNA was demonstrat-
ed by densitometric analysis of Northern
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(RNA) blots (15) (Fig. 2C). Other than the
imbalance in the mRNAs corresponding to
the two alleles, GIluR-B gene expression
appeared normal by Northern analysis, RT-
PCR, and in situ hybridization (Fig. 2D).
The mutant mRNA was characterized (13)
by the same flip-flop splice ratios (16) and
extent of R/G site editing (17) as were
wild-type transcripts, and the distribution of
GluR-B mRNA in the brain was as expect-
ed (18). In summary, the abundance of
GluR-B mRNA in GluR-B*/AECS mice is
70% of that in their wild-type littermates,
and one-quarter of these transcripts are un-
edited at the Q/R site.

In GR-B*/2ECS mice, the functional
hemizygosity with regard to Q/R site editing
would be expected to result in a shortage of
the edited GluR-B subunit for assembly of
heteromeric AMPA receptors and, hence, an
increase in the glutamate-activated Ca®* per-
meability of and Ca?" influx through these
channels (19, 20). This prediction was con-
firmed by measurement of responses to fast
application of glutamate in nucleated patches
isolated from the soma of different neuronal
cell types in various brain regions (21). For
example, in hippocampal pyramidal neurons
of the CALl subfield, the shift of the current
reversal potential in a solution containing a
high (30 mM) Ca’* concentration to less
negative potentials demonstrated that the
Ca’* permeability of AMPA receptors in
GIuR-B*/AECS heterozygotes was 7.3 times
that in wild-type homozygotes (Fig. 3). In two
other types of principal neurons, cerebellar
Purkinje cells and neocortical pyramidal
cells, the Ca’* permeability of AMPA re-
ceptors in GIuR-B*/AECS mice was also in-
creased by a factor of 5.2 to 7.3 (Fig. 3B).
Inhibitory basket cells of the dentate gyrus
(DG) in GluR-B*/* mice showed an average
Ca’*/Cs™ permeability ratio of 1.2, which is
somewhat smaller than that previously esti-
mated from outside-out patch recordings
(22). This difference is probably attributable
to the presence of two classes of basket cells,
one of which expresses AMPA receptors
with a low Ca®* permeability that give rise
to only small ensemble currents (Fig. 3B).
These currents could be detected in nucle-
ated patches but not in smaller outside-out
patches. Basket cells with lower and higher
AMPA receptor—mediated Ca?* permeabil-
ity occurred also in GIuR-B*/AE<S mice, in
which both groups of cells showed increased
Ca’* permeabilities. The difference between
the two groups was, however, less pro-
nounced than in GIuR-B*/* animals (Fig.
3B). Thus, if GIuR-B expression is low, as in
one class of DG basket cells, the Q/R site—
edited subunit would contribute relatively
little to the Ca®* permeability of AMPA
receptors, and, on average, the increased per-
meability in the heterozygotes was therefore
not as pronounced.
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Fig. 1. Generation of GluR-B*/*ECS mice. (A) Schematic representation of the GIuR-B subunit and of
gene segments (8) of the wild-type GIuR-B* allele (a), the targeted GIluR-B"*° allele (b), and the GIuR-
BAECS gligle after Cre recombination (c) (70). For the protein, Q/R and R/G editing sites (5, 6, 17) are
indicated by arrows; black boxes represent putative membrane segments M1 to M4 (2); the hatched box
shows the position of the alternatively spliced flip-flop exons (ff) (76); and the gray box represents the
signal peptide. For the gene segments, open boxes represent exonic sequences (8). The loxP sites are
shown by triangles and the neo-tk cassette by an open box. The solid circles in segment b delineate the
5’ and 3’ ends of the targeting construct. Relevant restriction enzyme recognition sites are indicated: K,
Kpnl; B, BsrG1; S, Scal; H, Hind lll. (B and €C) Genomic Hind IIl (H) and Kpn | (K) restriction fragments (B)
used in Southern blot analysis (C) to distinguish the GluR-B alleles a, b, and ¢ in targeted R1 ES cell
clones. Southern probes and their positions (70) are indicated by black bars in (B).

Fig. 2. GluR-B transcript analysis. A
RNA from the brains of GluR-B*/* QSJ
and GluR-B*/AECS mice was ana- LR
lyzed by various techniques. (A) RT-
PCR analysis with exon-10 and in-
tron-11 primers (713). Amplified frag-
ments containing intron 10 and de-
rived from pre-mRNA or gene
sequences are indicated according
to allele type by underlined sym-
bols. Amplicons lacking intron 10
and derived from pre-mRNA are
denoted by allele symbols that are
not underlined, and were cloned for
analysis of pre-mRNA. (B) RNase
protection analysis (74). Probe seg-
ments protected by the intron-11 sequence in the pre-mRNAs derived from GluR-B* and GIluR-BAECS
alleles are indicated by allele symbols (+, AECS). An asterisk indicates probe segments identified as
degradation products resulting from overdigestion. Self-protected probe fragments with lower signal
intensity are not indicated. (C) Northern blot analysis (75) with the RNA load controlled for by reprobing the
membrane with a probe for cyclophilin mRNA (Cycl). The positions of 28S and 18S ribosomal RNAs are
indicated. (D) In situ hybridization of GIuR-B mRNA from brains of GIuR-B*'* (upper panel) and GIuR-
B+/AECS (lower panel) mice (18). Scale bar, 1 mm.

-2690 bp

Molecular differences between the  several brain areas of GIuR-B*/AECS mice

GluR-B*'* and GluR-B™/AE®S animals were
revealed in the expression of the Ca’*-
responsive immediate-early genes c-Fos, c-
Jun, and Krox24 (23), which likely result
from the increased glutamate-activated
Ca’* entry into the neurons of heterozy-
gous animals. As observed by in situ hybrid-
ization, the abundance of c-Jun and Krox24
(24) mRNAs was consistently increased in
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(Fig. 4A). In particular, c-Jun expression
was increased in CAl pyramidal neurons,
whereas Krox24 expression was increased in
CA3 pyramidal neurons. Changes in c-Fos
expression differed among individual het-
erozygotes, perhaps reflecting the occur-
rence of spontaneous seizures (see below).
In contrast, the abundance of transcripts for
AMPA and N-methyl-D-aspartate receptor
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and GluR-B*/AECS mice. Relative Ca?* permeability, expressed as the ratio of Ca2* permeability to Na*
permeability (P.,/Py,), is plotted for GIuR-B*/* (open columns) and GluR-B*/AECS (filled columns) mice.
Values are means + SD of 27 experiments with eight GIuR-B*/* mice and 46 experiments with seven
GluR-B*/AECS mice. Right panels: Plots of relative Ca* permeability against peak current size at —40 mV
in DG basket cells of GIluR-B*/* and GluR-B*/2ECS mice as indicated.

Fig. 4. Histological analysis of brains from GIuR-
B*’* and GluR-B*/2ECS mice. (A) Autoradiograms
of horizontal brain sections (P15) hybridized with
353-labeled oligonucleotides specific for c-Jun and
Krox24 mRNAs (24). Half-brain images from wild-
type (+/+) and heterozygous (+/AECS) mice were
apposed to permit better evaluation of expression
differences. The hippocampal regions are shown
enlarged on the right. Arrows point to the CA3 field
for Krox24 and to the CA1 field for c-Jun. (B) Hip-
pocampal sections from mouse brains (15 pm),
fixed by immersion in 4% paraformaldehyde and
embedded in paraffin, were stained with hematox-
ylin-eosin. The close-ups on the right show the
CAS3 layer and reveal an increased abundance of
eosinophilic cells in the GIuR-B+/4ECS brain. Arrow
indicates the CA3 field.

subunits appeared unaltered (2, 16, 25).
During the first two postnatal weeks, the
heterozygous animals appeared healthy ex-
cept for an incipient hypotrophy. Beginning
at postnatal day 13 (P13), all carriers of the
GluR-BAESS allele rapidly developed a se-
verely compromised phenotype, resulting
from a neurological syndrome of which the
most recognizable manifestations were spon-
taneous and recurrent seizures, as well as
progressively agitated states with excessive
jumping and running fits (26). All heterozy-
gotes died by P20. Postmortem analysis of

+AECS
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A —

+/AECS ++

LY
50 um

the brains of three animals that underwent
prolonged seizure episodes revealed selective
neuronal degeneration in the lateral region
of the hippocampal CA3 field, with ~50%
of the neurons showing shrunken nuclei and
acidophilic cytoplasmic staining (27) (Fig.
4B). Neuronal degeneration was acute in
the absence of glial reactions, as assessed by
histology and by immunocytochemistry for

++ +/AECS
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glial acidic fibrillary protein. Detailed anal-
yses revealed no other apparent abnormali-
ties in the central or peripheral nervous
system, and skeletal muscles and visceral
organs showed normal histology (27). Thus,
aberrant excitatory signaling, rather than
morphological changes, may underlie the
compromised phenotype.

The dominant lethal effect of the GluR-
BAECS allele with a penetrance of 100%
demonstrates that efficient Q/R site editing
of GluR-B pre-mRNA (5, 16) and the re-
sulting low Ca’* permeability of AMPA
receptors in excitatory principal neurons
(19) are pivotal for CNS physiology. Our
data suggest that the onset and severity of
the epileptic phenotype engendered by a
reduction of Q/R site editing depend on the
ratio of edited to unedited GluR-B subunits
(28). It is possible that epileptic mouse
models related to altered AMPA receptor
properties could be established by regulating
this ratio. Indeed, the selective destruction
of hippocampal neurons in GIuR-B*/AECS
mice is reminiscent of kainate-induced hip-
pocampal lesions, which are relevant to
human temporal lobe epilepsy (29). It re-
mains to be determined whether any of the
human familial epilepsies (30) derive from
related molecular defects.
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