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Telomeres are multifunctional elements that shield chromosomeendsfrom degradation and 
end-to-end fusions, prevent activation of DNA damage checkpoints, and modulate the 
maintenance of telomeric DNA by telomerase. A major protein component of human 
telomeres has been identified and cloned. This factor, TRF, contains one Myb-type DNA- 
binding repeat and an amino-terminal acidic domain. lmmunofluorescent labeling shows 
that TRF specifically colocalizes with telomeric DNA in human interphase cells and is located 
at chromosome ends during metaphase. The presence of TRF along the telomeric TTAGGG 
repeat array demonstrates that human telomeresform aspecialized nucleoprotein complex. 

H u m a n  chromosomes carry a long termi- ( I  ). Because the loss of telomere function 
nal array of double-stranded T T A G G G  can induce cell cycle arrest and genome 
hexamers that are maintained by telomer- instability, the telomeric complex is likely 
ase. Telomeric DNA is thought to form a to be required in all human cells. Changes 
protective nucleoprotein cap through its as- in the structure and function of human 
sociation with telomere-specific proteins telomeres are thought to play a role in 
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malignant transformation and cellular se- 
nescence (2, 3). 

Protein components of the telomeric com- 
plex have been identified in ciliates and in 
yeast, but not in vertebrate systems (1). 
Quests for vertebrate telomeric proteins had 
previously yielded a single candidate factor 
that could potentially bind along the length of 
the telomeric TTAGGG repeat array (4-6). 
This protein, TRF (telomeric repeat binding 
factor), associates with double-stranded 
TTAGGG repeat arrays in vitro and displays 
strong specificity for vertebrate telomeric 
DNA (4, 5). TRF does not bind to single- 
stranded telomeric sequences and does not 
require the proximity of a DNA terminus for 
its interaction (4). The activity is expressed in 
nuclei from human, monkey, rodent, and 
chicken cells. which all c a m  TTAGGG re- 
peat arrays at their chromosome ends (4). 
Here, we show that TRF is a protein compo- 
nent of human telomeres. 

Human TRF (hTRF) activity can be 
detected in HeLa cell nuclear extracts on  

Fig. 1. Pur~ficat~on and . -N c 
S Z f  B 

M TRF 
S, 

~dent~ficat~on of the60-kD A -- 1 2 3 4 5 6 7 8 9 1 0 1 1 ~  ~ t 3 s % a a a a a ~ ~ a a ~ a ~ l l ~ ,  
hTRF proten. (A) Spec~fic - . - 
DNA affin~ty chromatog- 112 

M 
raphy of hTRF. Parttally - 
purrfied HeLa hTRF was TRF, m -l)r < W ~ D  
a ~ o l ~ e d  to a column con- 53 TRF . , 

taining restriction frag- 
ments with the sequence 2s 

FTAGGG],, coupled to 
<-*In 

-- .Hll <lrmGGGI, ,  
Streptavidin-agarose (7). probe 

Input, flow-through (FT), 
and the indicated KC1 fractions were assayed for hTRF binding activity with the use of a D 
FTAGGG],, gel-shift probe. (6) Coomassie blue staining pattern of purified hTRF. The Peptide Sequence h' (pmol) rn/z [MH+] TRF 
60-kD TRF band is indicated. p-Casein was added to enhance hTRF activity in purified 
preparations (7). The asterisk at the right indicates a -100-kD protein that is present in T7 EAEEVFEr 1.7 1009.2 1009.06 

T8 TLDAqFENdEr 1.4 1337.9 1338.38 some of the hTRFpreparations. Marker proteins (M) were prestained. (C) Recoveryof hTRF TIO TITsQDKPn,,,xVxM .4 2672.0 2668.80 (Max) 
activity by elution of the 60-kD protein from SDS-PAGE. Proteins from a gel similar to the 

TI1 ILLxYK 1.7 - one shown in (B) were eluted (5, 9), and hTRF activity was assayed by gel shift with a 
TI2 IqAlAVxm VTAGGG],, probe. Lanes 1 to 11 contain proteins isolated from successive gel slices 
T13 lFgDPNmpf , 

0.65 1658.7 1659.80 

covering the 120- to 20-kD range. Lane 7 contains proteinsfrom the55- to 65-kD range. (D) T20 xWNWLxEK 
1.3 1408.5 1406.60 (M,) 

Analysis of hTRF tryptic pept~des by chemical sequencing and laser-desorption mass T26 
1.5 1201.4 1202.35 
1.1 - 

spectrometry (70). Amino acids in lowercase were tentatively assigned; "x" indicates that 
T29 TIYICQFTr 

no identification could be made (27). IY indicates calculated initial sequencing yields; m/z is 
1.1 1363.0 1363.53 

the experimental mass of the peptide. [MH+] denotes the theoretical average isotopic mass 
of the peptide (plus one proton), calculated from the cDNA-derived sequence (Fig. 3C). M,, 
refers to methionine sulfoxide (singly oxidized methionine). 
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Fig. 2. Expression of -9 a 

hTRF mRNA in human : 9%: 
e~ g rn; g :  E C m  5 5 a =  tissues. The figure a I = 

shows a Northem blot . - -  - - -  
of polyadenylated kb 

RNAs (-2 kg per lane, 3.0 ()(la h- @I. I) 
Clontech) derived from 
the indicated tissues lB  * '- * - 
probed with a hTRF 
cDNA fragment en- TRF 
compassing most of 
the protein coding re- 2.0 
gion. Human TRF is 
encoded by the 3-kb pActin 
mRNA. The sequence 
of the 1.8-kb mRNA has not been determined. 
The bottom panel shows rehybridization of the 
same blot to a p-actin probe, which detects a 
2-kb mRNA in all tissues and the muscle-specific 
1.8-kb mRNA in heart and skeletal muscle. 

the basis of its ability to alter the mobility of 
a double-stranded DNA fragment contain- 
ing the sequence [TTAGGG],* (4). Using 
this assay, we purified HeLa hTRF to near 
homogeneity by ion-exchange chromatog- 
raphy, by elution from columns containing 
nonspecific Escherichia coli DNA, and by 
fractionation over specific telomeric DNA 
resins (7) (Fig. 1A). Three independent 
preparations of purified hTRF contained a 
protein in the 60-kD apparent molecular 
mass range (Fig. lB), which copurified with 
hTRF activity over a column containing 
double-stranded TTAGGG repeats (8). A 
-100-kD protein was present in some but 
not all purified hTRF preparations (Fig. 1B) 
(8). Elution of the 60-kD protein from SDS- 
polyacrylamide gel electrophoresis (PAGE) 
(9) resulted in partial recovery of hTRF 
activity (Fig. lC, lane 7), which indicates 
that a 60-kD polypeptide is sufficient for the 
formation of the hTRF complex with 
TTAGGG repeat probes. Amino acid se- 
quences were obtained for tryptic peptides 
derived from the 60-kD band (1 0) (Fig. ID), 
one of which (T29) revealed sequence iden- 
tity to an anonymous partial complementary 
DNA (cDNA) sequence in the GenBank 
database. O n  the basis of this nucleotide 
sequence, cDNAs were isolated from a HeLa 
cell library, sequenced, and found to contain 
an open reading frame (ORF) encoding all 
sequenced peptides (1 1 ), as discussed below. 

The hTRF cDNA hybridizes to two 
mRNAs of -1.8 and -3.0 kb that are ex- 
pressed in a variety of human tissues (Fig. 2). 
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Fig. 3. Human TRF A B . . - 
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sequencespecificity as [ N R T ~ V M L K D R W R T U K K ~ K L I S S D S E D  - 
does HeLa ~TRF.  unla- 
beled hTRF protein was D 

Myb 
produced in vitro [as in NLS repeat 

(A)] and assayed for bind- N-c 
2C 71 

ing to a FTAGGG],, $3," 3 
probe (lanes 2 to 8). Par- E 
tial'ypurifiedHeLahTRF H-TRF 

rabbit reticulocyte lysate 
(RRL) alone. Lanes 2 and 
9 contain reactions without addition of competitor DNAs (NC). Lanes 3 to 8 and 10 to 15 contain binding 
reactions in the presence of 20 and 200 ng of circular plasmid DNAs containing stretches of 1 to 2 kb of 
tandemly repeated hexamers of the indicated sequences (5). (C) Conceptional translation of the ORF in 
hTRF cDNA (1 1,27). The NH2-terminal acidic region, two overlapping potential localization signals, and the 
region of homology to the Myb-type DNA-binding repeat are boxed. (D) Domain structure of hTRF (NLS, 
nuclear localization signal). (E) Alignment of hTRF to the Myb-type DNA-binding repeats of mammalian [Hu, 
human; Mu, mouse (murine)] and Drosophila myb proto-oncogenes (1 1.27). 

Sequence analysis of three overlapping hTRF 
cDNAs derived from the larger mRNA (I I) 
revealed an ORF encoding a 439-amino acid 
protein (Fig. 3). The predicted molecular mass 
of this protein is 50,341 daltons, which is 10 
kD smaller than the apparent molecular mass 
of purified HeLa hTRF. In vitro transcription 
and translation of the cloned cDNA produced 
a protein of the same size as purified HeLa 
hTRF (60 kD) (Fig. 3A), which indicated 
anomalous migration during SDS-PAGE. To 
verify that the cloned gene represented hTRF, 
we used in vitrc-expressed protein in mobili- 
ty-shift assays with a [TTAGGGIl2 probe. 
The in vitrc-expressed protein formed a com- 
plex with the telomeric DNA probe that 
comigrated with the largest of three closely 
migrating gel-shift complexes formed with 
HeLa hTRF (Fig. 3B). The two smaller hTRF 
complexes detected in HeLa extracts were 
never observed with in vitrc-expressed hTRF. 
Whether the additional HeLa hTRF com- 
plexes resulted from modification in vivo or 
from alteration of the hTRF protein during 
isolation (for instance, by partial proteolytic 
degradation or dephosphorylation) is not 

known. Competition experiments with 
cloned telomeric DNA5 in circular plasmids 
showed that the cloned hTRF protein and 
HeLa hTRF have the same sequence specific- 
ity and, as expected (4), do not require a 
DNA end for binding (Fig. 3B). For both the 
HeLa and cloned hTRF activities, the stron- 
gest competition was observed with a plasmid 
containing a TTAGGG repeat array; a plas- 
mid with TTGGGG repeats competed to a 
lesser extent, and no competition occurred 
with a plasmid with TTAGGC repeats (Fig. 
3B). These results demonstrated that the 
cloned cDNA encoded hTRF. 

Comparison with the sequence informa- 
tion in the databases indicated that hTRF is 
a novel protein with three previously recog- 
nized sequence motifs (Fig. 3, C and D). 
hTRF contains two overlapping nucleoplas- 
min-type nuclear localization signals around 
position 350 and an NH2-terminal region 
that is rich in aspartic and glutamic acid 
residues ( I  I ). The acidic domain of hTRF 
extends over a segment of 52 amino acids 
with 44% acidic residues and a calculated 
isoelectric point (PI) of 3.0. Although clus- 
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Fig. 4. Telomeric localiza- 
tion of TRF in human cells. 
(A through C) Colocalization 
of a FLAG epitopetagged 
mTRF protein with telomeric 
DNA in interphase (75, 76). 
In (A), Hela cells were tran- 
siently transfected with 
FLAG-mTRF expressed 
from the CMV promoter and 
labeled with an anti-FLAG 
rnAb (M5) and FKC-conju- 
gated donkey antibody to 
mouse IgG (green). In (B), 
telomeric DNA was visual- 
ized in the same nuclei by 
fluorescent in situ hybridiza- 
tion of a digoxigenin-labeled 
[CCCUAA],, RNA, followed 
by sheep anti-digoxigenin 
and TRITC-conjugated anti- 
body to sheep IgG (red). In 
(C) is a superimposition of 
the images in (A) and (B). 
White and yellow indicate 
colocalization of the signals 
in (A) and (B). (D) Metaphase 
chromosomes of a HeLa 
cell expressing [HA], 
epitope-tagged mTRF, la- 
beled with an HA mAb 
(12CA5) and a FITC-la- 
beled goat antibody to 
mouse IgG (green) (15, 
76). In each panel, the 
DNA was stained with 
DAPl (blue). Scale bars, 5 
ILm. 

ters of acidic residues have been primarily 
implicated in mediating protein-protein in- 
teractions during transcriptional regulation, 
thev are also found in a number of wroteins 
involved in chromosome function, includ- 
ing centromeric proteins, the p150 subunit 
of chromatin assembly factor I (CAF-I), and 
the largest subunit of the yeast origin recog- 
nition complex (ORC1) (12). The third 
recognizable motif in hTRF is a COOH- 
terminal region with strong homology to the 
DNA-binding repeats found in myb proto- 
oncogenes (Fig. 3D). These Myb-type 
DNA-binding repeats are -50-amino acid 
stretches with three highly conserved tryp- 
tophan residues that form a helix-turn-helix 
(HTH) DNA-binding fold (13). Human 
TRF is most similar to the second and third 
Myb repeats in the mammalian and Dro- 
sophila Myb proteins. Unlike hTRF, these 
factors carry three tandem copies of this 
motif, two of which (R2 and R3) are suffi- 
cient for DNA binding (13). DNA-binding 
proteins carrying a single Myb repeat have 
been reported previously (14). 

The nuclear and chromosomal location 
of TRF was determined bv immunofluores- 
cence microscopy of epitope-tagged mouse 
TRF (mTRF) protein expressed in tran- 
siently transfected HeLa cells (15, 16). Fig- 

ure 4 shows that Met-Asp-Tyr-Lys-Asp- 
Asp-Asp-Asp-Lys (FLAG)-tagged mTRF 
displayed a punctate pattern in interphase 
nuclei. A similar speckled distribution was 
found for hemagglutinin [HAI2-tagged 
mTRF (1 7). A minority of the transfected 
cells showed homogeneous nuclear staining 
in addition to the speckled pattern, possibly 
because of greater amounts of mTRF ex- 
pression (1 7). No specific patterns emerged 
in control experiments with untransfected 
cells or after omission of the primary anti- 
body (1 7). Dual labeling experiments re- 
vealed that the speckled mTRF distribution 
coincided with telomeric DNA detected by 
TTAGGG repeat-specific fluorescent in 
situ hybridization (Fig. 4, B and C). All 
telomeric loci were found to contain mTRF, 
and, vice versa, all mTRF speckles were 
associated with telomeric DNA. 

The chromosomal distribution of TRF was 
determined by expression of a fusion protein 
with two tandem HA epitopes at its NH,- 
terminus. In metaphase chromosomes of sta- 
bly transfected HeLa cells, [HAI2-tagged 
mTRF was predominantly detected at chro- 
mosome ends (Fig. 4D). Mouse TRF appeared 
to be a common feature of all chromosome 
ends. Occasionally, telomeres without mTRF 
could be found, but the absence of mTRF did 

not appear to be specific for any one chromo- 
some end and is most likely a result of diffi- 
culties in detection of the protein in meta- 
phase spreads. Discrete localization of mTRF 
to internal loci was not observed. In some 
metaphase spreads, weak staining along the 
axis of all chromosomes accompanied the 
telomeric signals (1 7). However, the strongest 
signals were invariably observed at chromo- 
some ends. 

These results demonstrate that TRF is a 
telomeric protein in vivo. TRF occupies 
chromosome ends both in intemhase and 
metaphase, consistent with its role in the 
telomeric comwlex. Indirect evidence had 
previously suggested that mammalian chro- 
mosome ends contain one or more telomere- 
specific proteins (3-6, 18). For instance, 
human telomeres display an altered chroma- 
tin structure and bind to the nuclear matrix 
(18). Moreover, formation of new human 
telomeres uvon DNA transfection occurs 
only with telomere seeds that contain pre- 
cise TTAGGG repeat arrays (5). The failure 
of other (closely related) repetitive sequenc- 
es to form new telomeres suggested that telo- 
mere healing involved a specific telomeric 
DNA-binding protein (5). However, telo- 
meric proteins had not been isolated from 
human cells or other vertebrates (1, 6). Our 
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results now demonstrate dlrectly that human 
telorneres form a co rn~ lex  a ~ t h  a telomere- 
specific protein, hTRF. In  agreement with a 
role for hTRF at telomeres, the  sequence 
specificity of hTRF matches the  sequence 
requirements for telomere formation in hu- 
man cells (6). O n  the basis of the data 
presentei3 here, we suggest that TRF binding 
is required for telolnere f ~ ~ n c t i o n  at the ends 
of chrolnosolnes in human and other m a n -  
malian cells. 

TRF is a double-stranded telo~neric DNA- 
billding factor. Double-stranded telomeric 
DNA-binding proteins had previously been 
implicated in telomere f ~ ~ n c t i o n  in budding 
yeasts. In Saccharomyces cereejisiae, Raplp 
binds along the double-stranded telolneric 
TG,., tracts, where it regulates telomere 
length, chrolnosolne stability, and telo~neric 
position effects (19). Genetic alteration of the 
telolneric sequence of Kluyveromyces lnctis has 
implicated a double-stranded telolneric DNA- 
binding protein in the reg~~lation of telomer- 
ase (20). Although hTRF is not a Raplp 
homolog, we note that the recently deter- 
mined structure of a Raplp-DNA colnplex 
reveals two Myb-type HTH motifs (21 ). Fur- 
ther structural and functional colnoarisons be- 
tween these telolneric factors should be of 
interest. Several observations suggest that 
telomere maintenance in mammals, as in 
yeast, is subject to homeostasis (6).  For in- 
stance, tnaln~nalian telolneres are maintained 
at constant length over the generations, and 
different malnlnals show species-specific telo- 
Inere length (22). Moreover, telomerase ex- 
pression in itnmortalized human cells does not 
lead to unlimiteil telolnere elongation (23). A 
simple model to explain such phenomena in- 
vokes a factor (such as TRF) that binds along 
the length of the telo~neric repeat array and 
modulates telomerase-mediated telomere 
elongation (6 ,  20). 

Human telolneres undergo progralnlned 
shortening in the soma (16, 24). When  
grown in vitro, human cells enter a growth 
crisis at a stage when telolneres appear crit- 
ically shortened and chrolnosolne end ~ L I -  
sions are frequent (23). Similarly, loss of 
telonleric D N A  in hulnan tumors has been 
suggested to contribute to genome instability 
in cancer (2 ,  25). A mechanisln to restore 
ani3 maintain telolneres (such as activation 
of telomerase) may be required for tumor 
progression and cellular immortalization 
(26). Our  findings raise the possibility that 
some of the deleterious consequences of telo- 
mere attrition may be caused by a failure of 
chromosolne ends to bind protective telo- 
meric proteins, including hTRF. 
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Conserved Initiator Proteins in Eukaryotes 
Kimberley A. Gavin, Masumi Hidaka, Bruce Stillman* 

The origin recognition complex (ORC), a multisubunit protein identified in Saccharomyces 
cerevisiae, binds to chromosomal replicators and is required for the initiation of cellular 
DNA replication. Complementary DNAs (cDNAs) encoding proteins related to the two 
largest subunits of ORC were cloned from various eukaryotes. The cDNAs encoding 
proteins related to S. cerevisiae Orcl p were cloned from the budding yeast Kluyvero- 
myces lactis, the fission yeast Schizosaccharomyces pombe, and human cells. These 
proteins show similarity to regulators of the S and M phases of the cell cycle. Genetic 
analysis of orcl' from S. pombe reveals that it is essential for cell viability. The cDNAs 
encoding proteins related to S. cerevisiae Orc2p were cloned from Arabidopsis thaliana, 
Caenorhabditis elegans, and human cells. The human ORC-related proteins interact in 
vivo to form a complex. These studies suggest that ORC subunits are conserved and that 
the role of ORC is a general feature of eukaryotic DNA replication. 

T h e  replicon model for the initiation of 
DNA replication postulates that for DNA 
synthesis to occur, an initiator protein is 
required for recognition of a specific repli- 
cator sequence in the chrolnosome ( 1  ). In 
this model, recognition of the replicator by 
the initiator protein determines the loca- 
tion of an orlgin of DNA replication. Data 
from studies of prokaryotes and eukaryotic 
viruses support this hypothesis and suggest 
that the lnechanisln of initiation of DNA 
replication is conserved in eukaryotes. The 
initiation of DNA replication in eukaryotic 
cells is tightly controlled during the cell 
cycle and throughout development to en- 
sure that duplication of the genome occurs 
only once per cell cycle. Thus, initiation is 
a key regulatory step in DNA replication. 

In eukaryotes, the nature of initiator 
proteins and replicator ele~nents remains 

~ ~ n c l e a r  (2) .  Attempts to define precisely 
the origins of DNA replication have been 
largely unsuccessf~~l. A notable exception is 
the yeast Saccharomyces cerevisine, in which 
the origins of DNA replication have been 
physically mapped (3). Autonomously rep- 
licating sequences (ARS) have heen char- 
acterized at the molecular level, revealmg a 
modular structure 14. 5) .  All ARS elelnents , , 

contain an essential ARS consensus se- 
quence (ACS) and other elenlents that to- 
gether are required for ARS f ~ ~ n c t i o n .  In 
addition to characterized replication ori- 
gins, an initiator protein complex has been 
isolated (6) .  O R C  was identified hy its ahil- 
ity to recognize and bind to the ACS in an 
adenosine triphosphate (ATP)-dependent 
manner. ORC recognizes a bipartite se- 
quence within the replicator (6, 7) and is 
bound to the DNA throughout the cell 
cycle (8). In cooperation with other cell 
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molecular Inass ranging from 50 to 120 kD. 
The genes encoding all the subunits have 
been cloned 11 1-1 4) and all are essential for 
cell viability. All six genes encode novel pro- 
teins, although ORCl and ORC5 encode pro- 
teins that have reeions of seauence silnilaritv 
that are presellt in previously identified pro- 
teins. ORCl encodes the largest subunit of 
ORC, and its protein product is related to two 
other know11 yeast proteins (13). The protein 
nlost related to Orclp is Sir3p, a protein 
involved in transcriptional silencing (15). Al- 
though these proteins are related over their 
entire length, the most striking similarity is 
found in the first 220 amino acids. A pair~vise 
cornparison shows that the proteins are 50% 
identical and 63% similar over this region. 
Orclp is also related to two cell division cycle 
(CDC) regulators of initiatioli of DNA repli- 
cation and control of the G2- to M-phase 
transition, S .  ceree'isiae Cdc6p and Schizosac- 
charomyces pornbe Cdcl8p (1 6). A 270-amino 
acid region in Orclp (residues 449 to 717) 
contains a purlne nucleotide-binding motif 
(17) that is present in hot11 Cdc6p and 
CdclSp. In addition to the canonical P-loop 
and A-loop necessary for nucleotide metabo- 
lislll (17), there are sequences flanking these 
nucleotide-binding motifs that are present 
only in Orclp, Cdcbp, and Cdcl8p (13). 
Orclp is 50% identical to Cdc6p and CdclSp 
across this region. LVe refer to this domain as 
the CDC-nucleoside triphospl~ate-bindillg 
ICDC-NTP) domain. Althouel~ Sir3n shares 
sequence homology with Orclp across this 
domain, key residues essential for nucleotide 
binding are absent from Sir3p (13). 

The mature of replicators in metazoan spe- 
cies is not clear, and in Xenopus early embryos 
their very existence has been questioned (18). 
To  hegin to address ~vhether the replicon 
lllodel applies to cell chromosome replication 
in higher eukaryotes, we identified genes re- 
lated to ORCl in humans and other organ- 
isms (Fig. 1). We used a polymerase chain 
reaction (PCR) strategy, with primers based 
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