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It is known that quantum computers can dramatically speed up the task of finding factors 
of large numbers, a problem of practical significance for cryptographic applications. 
Factors of an L-digit number can be found in -L2 time [compared to - e ~ p ( L ' / ~ )  time] by 
a quantum computer, which simultaneously follows all paths corresponding to distinct 
classical inputs, obtaining the solution from the coherent quantum interference of the 
alternatives. Here it is shown how the decoherence process degrades the interference 
pattern that emerges from the quantum factoring algorithm. For a quantum computer 
performing logical operations, an exponential decay of quantum coherence is inevitable. 
However, even in the presence of exponential decoherence, quantum computation can 
be useful as long as a sufficiently low decoherence rate can be achieved to allow 
meaningful results to be extracted from the calculation. 

T h e  u~liilueness of the  prime factorization 
of a positive integer is the  Fundame~l ta l  
Theorem of Arithmetic ( 1 ) .  111 practice, 
the  determination of the  prime factors of a 
given number can be a n  exceedingly dif- 
ficult problem, even though verification is 
trivial. This  asymmetry is the  basis for 
modern cryptography and pro\ '1 'd  es secret 

by computing the greatest colnrnon divisor 
of xti2 5 1 and N ( 1 ,  4). T h e  difficulty is in 
calculating r,  which is solved by the iluan- 
tum factoring algorithm: First choose a 
smooth number (one with small prime fac- 
tors) q such that N 2  < q < 2N2 and build 
the state 

codes used not  0111~ o n  your ow11 bank 
card but also to transfer dinlomatic mes- 
sages between embassies. 

Atternpts.td undermine the  security pro- 
vided hv the  difficultv of factorization have 
by and iarge met wi th  failure, even with the  
aid of powerful moder11 computers. 111 fact, 
this problem is widely believed to have 110 

polynomial-time solutio11 (2), although a 
nroof of this statement has remained elu- 
sive. T h e  best known classical computer 
algorithm (3) for factoring a 11umher N of L 
digits takes a time expone~ltial  in Lli3. In  
contrast, Shor (4) has shown recently that 
with the help of a iluantum computer, one 
can factor numbers in  a random polynomial 
amount of time. Therefore, such cornuuters 
could be a threat to what is presently one of 
the  most common methods of enc ryp t io~~ .  
However. it is still unknown whether such 
tnachines are practical, because they de- 
pend crucially o n  quantum-mechanical he- 
havior that is uncommon to our mostly 
classical world (5). 

T h e  quantum factoring algorithm uses in 
a n  essential way the coherence of a y u a n  
turn wave function. T o  factor a number N, 
one chooses a number x a t  random and 
calculates its order, r,  modulo N, that is, 
one finds r such that x' 1 mod N .  Once r 
is k~ lown,  factors of N may likely he found 
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from which can be obtained (with a quan- 
tum computer) (6)  

W e  can now Fourier transform this pure 
state (again, with a quantum computer) to 

get 

(3 
and can measure both arguments of this 
superposition, obtaining the value c for m in 
the first argument and some x h s  the answer 
for the seco~ld one (k being any number 
between 0 and r ) .  Given the pure state 4J3), 
probabilities of different results for this mea- 
surement will be given by the probability 
distributio~l 

where the prime indicates a restricted sum 
over values of a that satisfy xa x" mod N .  
Independent of k, P(c, x") is periodic in c 
with period q/r, hut because we know q ,  we 
can determine r with a few trial executions 
[an example of P(c, x") is shown in  Fig. 11. 
A lneasurement thus gives with high prob- 
ability c = Xqlr, where X is a n  integer that 

corresponds to a particular peak in  Fig. 1. 
Wi th  a few runs of the program, we can 
deduce r and thus the  factors of N. 

This algorithm assumes that the  q u a n  
tilm computer is completely isolated. In  
practice this will c e r t a i ~ l l ~  not he the  case. 
It is the  effect of imperfect isolation that we 
study here. A n  obvious effect is that the 
quantum computer will lose energy. This 
happens at the rate T;:,, the inverse of the 
relaxation time scale. It is relatively easy to  
make systems for which T,,, can he very 
large and thus allow for a reasonable num- 
her of operations. A much more insidious 
effect of imperfect isolation is decoherence 
(7). Decoherence is caused by continuous 
interaction between the  system ( in  our case, 
the quantum computer) and the  enviro11- 
ment (7, 8). As a result, the  state of the 
environment "monitors," and therefore he- 
comes correlated with, the state of the corn- 
puter. As a quantum system evolves, infor- 
mation about its states leaks out into the 
environment, causing the states to loose 
their purity and, consequently, their ability 
to interfere. 

It is important to realize that the  time 
scale for decoherence T~~~ is usually much 
smaller than the  one for relaxation. For 
example, a n  oscillator of mass m in a super- 
position of coherent states (separated by a 
distance Ax from each other) interacting 
l i ~ l e a r l ~  with a bath a t  temperature T has 
the  decoherence time (9) 

where X d B  is the thermal de Broglie wave- 
length. This expression is valid for high 
temperatures only; at low temperatures, T ~ , ~ ~  

becomes inversely proportional to the  cut- 
off frequency of the bath. N o  net energy 
transfer is needed to effect decoherence. 
This implies a much greater se~lsitivity of 
quantum computation to decohere~lce than 
to the  relaxation process. 

0.18, 
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Fig. 1. Probabty dstrbut~on for the measure- 
ment of c In the state glven In Eq 3 w~th N = 21, q 
= 128, x = 5, and k = 3 The broadenng of the 
peaks IS from the use of a d~screte Fourer trans- 
form w~th q possble modes; a contnuous Four~er 
transform would have glven delta funct~ons 
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The decoherence process has been pro- 
posed as a mechanism for enforcing classical 
behavior in the macroscopic realm. Deco- 
herence results in environment-induced su- 
perselection (7- 9), which destroys super- 
positions between the states of a preferred 
pointer basis (a  set of states selected by the 
interaction with the environment) (8). 
Classical computers are already decohered: 
computation takes them through a predict- 
able sequence of such pointer states, which 
are stable in spite of the environment; thus, 
classical computers cannot be put in arbi- 
trary superpositions. However, coupling 
with the environment will be inevitable for 
any system that implements quantum com- 
putation. Here we show the effect of deco- 
herence on the interference pattern pro- 
duced as a result of executing the quantum 
factoring algorithm. 

Our model involves the introduction of 
the environment as a system external to the 
computer; its state is represented by third 
label. The input state may thus be written 
as 

where E is the initial state of the environ- 
ment and @ is the direct product of vector 
spaces. The environment is initially uncor- 
related with .the computer; however, it is 
likely that the bits necessary for the calcu- 
lation of x" inod N will interact with the 
environment. so that the next state 

leaves the environment partially correlated 
with the state of the computer. When the 
physical representation for the computer's 
quantum bits is diagonal in the pointer basis 
of the environment, decoherence results in no 
adverse eifects when measuring the second 
label of 1 +2). Such a design would be optimal. 
We thus focus on the effects of decoherence 
on the first label by suppressing the second 
label and tracing over the environment to 
obtain the reduced density matrix 

q - 1  I ] - 1  

Pred = C ' 2 ' (1 - P,,,) I a) (a' 1 (8) 
.I= C a ' =  C 

Here 1 - Pa,, = [(E, I E,,)I is a measure of 
the extent to which the state of the envi- 
ronment has become correlated with the 
state of the quantum computer. If 1 a) and 
1 a ' )  are quantum bit (qubit) register states 
diagonal in the pointer basis, then we may 
take 

1 - Po, - exp[- e.(a XOR a ' ) ]  (9) 

where the exclusive-or (XOR) function 
gives the Hamming distance (10) between a 

and a'. Decoherence is characterized by a 
parameter 5, which depends on the partic- 
ular realization of the quantum computer. 
The measurement results in a probability 
distribution, shown in Fig. 2, which differs 
from the one in Eq. 4 (see Fig. 1)  in that 
non-zero-probabilities have appeared be- 
tween the peaks and that these peaks have 
decreased in amplitude. Note that decoher- 
ence does not increase the width of the 
peaks. 

The qualitative effect of decoherence is 
well approximated by the simpler function 1 
- p, = 1 - P(1 - S,.), where is a 
constant. For 13 = 0 we pet the state with 
complete cohekence, and &r p = 1 one with 
complete decoherence (that is, a matrix di- 
agonal in the pointer states). In the limit of 
- 0, we may understand P as the fraction- 

al amount of information lost to the envi- 
ronment. For p - 0.5, the probability be- 
tween the peaks (Fig. 2) is equal to one of 
the peaks, and thus there is as much chance 
to get a correct answer as a wrong one. Let L 
= log N. Once (1 - 6)- '  - O[exp(L"3)], 
the quantum computer becomes as ineffi- 
cient as a classical one, requiring a number 
of trials exoonential in Lli3 to factor N. 
Note that p is analogous to the ratio be- 
tween the am~li tude of the destructive and 
constructive interference in the double-slit 
experiment, also called the fringe visibility 
function. 

When we assume that the effect of the 
environment has a Markoffian character, 
then p .r 1 - e-nt'~.aM - n aM,  where a is 

O P  
the coherence lost per bit In a single logic 
oneration. M is the number of memorv 
qubits involved, and no, is the number of 
time steps required to complete the compu- 
tation. To  factor a number N - eL, the 
quantum algorithm requires M - L and n ,p  
- L2. With perfect operation, each execu- 
tion gives a factor with probability O(l /L),  
and thus with decoherence, the required 
number of trials is O(Ll(1 - P)) .  When this 
is expressed in terins of a and L, the number 
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Fig. 2. Effect of decoherence on the probability 
distribution for the value of c. The state is given by 
Eq. 8 once a is Fourier transformed. The decoher- 
ence parameter (Eq. 9) has been taken to be < = 
0.1. Our constant-beta approximation, w~th = 

0.58 (dash-dotted line), shows good agreement. 

of trials required find a factor of N is of 
order 

Number of trials - Lexp(L3a) (10) 

To  give performance better than the classi- 
cal algorithm, we must therefore have 

Designs for quantum computers have been 
suggested (1 1- 14) and some possible diffi- 
culties investigated (5,  15). Common to 
these designs is the model of a simple two- 
state system (qubit) interacting with an en- 
semble of oscillators (the environment), 
from which we can eet an idea of what a is. " 

Such an analysis, with the well-studied 
spin-boson Hamiltonian ( 1  6) ,  straightfor- 
wardly gives the result that in a typical time 
step of a quantum computer, the effect of 
coupling to a zero-temperature environ- 
ment is to decrease the off-diagonal term of 
the density matrix by the amount (17) 

where E is the (dimensionless) coupling 
strength, 7 is the resulting viscosity on the 
qubit (which will determine the rate of 
the loss of energy), A is a high-frequency 
cut-off of the bath, A- '  defines the time 
scale of a single operation, and y is coher- 
ence lost Der unit time. For exam~le ,  in 

L ,  

the experimental realization of an  ion-trap 
quantum logic gate by Monroe et al. ( IS ) ,  
y = lo3 Hz and A - lo4 Hz. This gives a 
= 0.1, which implies that a quantum com- 
Duter would out~erform a classical one 
only for a number no more than a few bits 
in length. O n  the other hand, the original 
proposal of Cirac and Zoller (14) assumes 
that the ultimate source of errors will be 
spontaneous emission and estimates that y - 0.1 Hz and A - 10' Hz, which nai'vely 
gives a - This value would allow 
factoring of a number of perhaps a few 
hundred bits. Although the latter estimate 
is promising, we stress that it may be over- 
ly optimistic, because y does not reflect all 
of the decoherence processes that may be 
taking place. 

Unruh has also analyzed the impact of 
decoherence on quantum computation 
(15). He  computed the behavior of a static 
memory, which exhibited three regimes of 
the decav of coherence of a aubit Ian earlv . . 
one depending on the state of the qubit; 4 
"quantum" regime where - l/(ht); and a 
"thermal" regime that starts at fi/kgT (kU,  
Boltzmann's constant)] in which P - 
e x p ( - ~ ~  Tt),  and concluded that the time 
taken by the quantum computer to com- 
plete the calculation must be smaller than 
the (thermal) time scale for which the de- 
coherence ( p )  becomes exponential. We 
differ with these conclusions on two counts. 
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( i )  When the computer is carrying out oper- 
ations (rather than just trying to remember 
some state), the decay of quantum coherence 
is inevitablv exnonential even in the limit of , A 

zero temperature. Nevertheless, (ii) expo- 
nential decay is not a reason to give up: It is 
the rate of that decay that ultimately mat- 
ters. This rate is given by Eq. 12 in the case 
studied here, and bv ~ ~ k , , T / f i A  for the tem- 

u ,  

perature-dominated' regime. In either case, 
by increasing isolation (that is, by making E 

small) and making the clock rate A large, 
one can take the computation well beyond 
the time scale (thermal or otherwise) when 
the loss of coherence becomes exponential 
with time. 

Ultimately, the savior of general-purpose 
quantum computing lies in the success of 
quantum error correction. It is generally 
true that the discrepancy between the cor- 
rect state of a quantum computer and the 
actual state will initially increase only quad- 
ratically in time ( t )  

where 6 is the variance of the difference 
between the ideal and actual energy. Thus, 
the "watchdog effect" can be used to stabilize 
the computation (19), for when the comput- 
er is measured often enough, on a time scale 
tlv that is short compared with 116, it will 
stray from the correct evolution only a little, 
so that the probability of being correct is 

which can be much closer to unity than Eq. 
13. Performing a measurement on a qubit at 
the instants when it is expected to be in the 
eigenstate of the measured observable with 
certainty according to will project the 
actual state of the computer into a state closer 
to I+,,,,,) and may thus offer a way of imple- 
menting such a "watchdog stabilization" (20). 
Although this effect is useless once the loss of 
coherence becomes exponential (as it is for 
spontaneous em~ssion), such a scheme inay be 
helpful in keeping at bay errors from timing 
inaccuracies and environmental differences. 
For example, in the linear ion trap computer 
(14), both the center-of-mass phonon and the 
auxiliary levels of the ions have pred~ctable 
occupation numbers at well defined instants 
during ideal operation. This promise, coupled 
with the results obtained from our analysis of 
the impact of decoherence on the quantum 
factoring algorithm, bring some hope to the 
eventual reality of quantum computers and 
motivate further experimental investigations 
in this field. 
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Correlated Variations in the Solar Neutrino Flux 
and the Solar Wind and the Relation to the 

Solar Neutrino Problem 
R. L. McNutt Jr. 

Solar wind parameters from the Massachusetts Institute of Technology (MIT) plasma 
experiment on the IMP 8 spacecraft overlap -19 years of published neutrino flux ob- 
servations from the Homestake experiment. A strong correlation is found between neu- 
trino flux and solar wind properties, in particular, the solar wind mass flux. The correlation 
is significantly better than any anticorrelation with sunspot number and is comparable to 
those previously found with photospheric magnetic flux and shifts inp-mode frequencies. 
If current notions of solar structure are correct, these observations require new funda- 
mental physics of neutrinos. For a proper choice of neutrino parameters, the level of 
variations is consistent with resonant conversion of electron neutrinos to a nondetected 
flavor eigenstate mediated by the magnetic field in the sun's convective zone. The solar 
wind mass flux may act as a proxy for this field, producing the solar wind-neutrino flux 
connection. 

T h e  measured average neutrino flux from 
the sun is low compared with predictions 
based on solar models. This discrepancy, a 
factor of more than 3, originally showed up 
in the data of the 37C1 experiment in the 
Homestake Gold Mine in South Dakota (1) 
and is known as the solar neutrino oroblem 
(2). Low neutrino fluxes have been con- 
firmed for neutrino energies other than 
those measured at Homestake bv the Ka- 
miokande-I1 water Cherenkov eiperiinent 
(3) and the SAGE (4) and GALLEX ( 5 )  
gallium experiments. 

The Homestake rate appears to exhibit a 
time-variable comnonent. A oossible anti- 
correlation with solar activity has been 
studied by a number of investigators. The 
correlation has remained suspect because of 
the low counting statistics, questionable 
correlation, and difficulty of explanation 
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(6-8). Confirmation from the other solar 
neutrino experiments now operating is 
problematic because of the shorter times 
the experiments have been running and 
laree statistical uncertainties. 

u 

Strong (time-dependent) correlations 
have been reported between shifts in solar 
p-mode frequencies and the Homestake 
capture rate (9 ,  10). Recently an anticorre- 
lation of capture rate with photospheric 
magnetic flux that is stronger than that 
with sunspot number has been found (1 1); 
this anticorrelation increases as flux awav 
from the center of the solar disk is excluded. 
In this reoort I show that there is a corre- 
sponding large correlation between capture 
rate and the solar wind flux as measured 
near Earth by the MIT plasma experiment 
on the IMP 8 satellite. 

The solar wind data used here are from 
the MIT Faraday cup plasma analyzer (1 2). 
The only significant data gap is from part of 
1982 to 1983, resulting from a problem with 
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