CHNICAL COMMENTS

The Evolution of Molecular Computation

Leconard M. Adleman (1) and Richard J.
Lipton (2) describe how molecular comput-
ing could be used to solve complex prob-
lems by physical selection of the correct
sequence string from a single huge library of
DNA sequences. However, others (3) point
out that even a simple 23-node Hamiltoni-
an path problem requires kilogram amounts
of DNA. The size of the DNA library need-
ed to solve a 100-node Hamiltonian would
approximate the number of particles in the
universe (107°).

Does this mean that molecular computing
is impractical for solving very complex prob-
lems? To answer this question, it is useful to
compare molecular computing to natural bio-
logical evolution and its experimental deriv-
ative, in vitro evolution (4, 5): The process of
physical selection of the best sequences from
large pools of sequences is similar in both
settings. In natural as well as in in vitro evo-
lution, these pools of sequences are relatively
small (5 X 10° people on Earth; 10" for
aptamers). Yet, selection from such modest
populations has yielded the vast complexity of
biological DNA sequences. The explanation
is that multiple, recursive cycles of selection
from small pools can “compute” complex an-
swers that far exceed the capacity of any single
library of sequences.

Whereas the published examples of mo-
lecular computing focus on selection of a
complex answer by screening all of the in-
dividuals in a single huge pool of sequences,
evolution uses many recursive cycles of se-
lection from pools of modest size. Recursive
means that the best (partial) solutions se-
lected from one pool are amplified and mu-
tated to form the next pool. The natural
mutation process consists of sexual, homol-
ogous recombination, with a low frequency
of point mutation. For in vitro evolution,
the recombination can be obtained by sex-
ual polymerase chain reaction (6). Recur-
sive selection and recombination was
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shown to be sufficient to “compute” a
sharply improved enzyme (4).

Consider the difficulty of designing se-
quences such as the human genome. The
human genome codes for approximately
100,000 proteins. Even a small protein of
300 amino acids has a sequence space of
20%%° or 10°° (a “sequence space” being
the number of possible sequences of a
particular length). How complex would a
random library need to be to contain a
functional copy of, for example, B-lacta-
mase? It appears that no library can be
made large enough to allow one-step se-
lection of an average, functional gene. For
example, the size of a library of random
sequence DNA needed to obtain a specific
8-bp restriction site, using the naive algo-
rithm given by Adleman (1), is 64,000. To
obtain five different 8-bp restriction sites
in specific locations would require a li-
brary of (64,000)° or 10%*, which is too
large to be obtained from a single library.
But the five sites could efficiently be ob-
tained in five recursive selection cycles
from a library of 10° to 10° bp, selecting
for a different restriction site at each of
five cycles.

The recursive approach allows one to
move rapidly through a vast sequence space,
sampling only a small fraction of all the
sequences that need to be accessed with a
single pool approach (five cycles of 10°
versus 10%*). Only the most promising se-
quences are selected and used as the basis
for further mutagenesis and selection.

Parallel access to a larger number of se-
quences was regarded as the main advantage
of molecular computation over traditional
computing (I1-3). For those complex prob-
lems where smaller, recursive pools of se-
quences can be equally or more effective,
molecular computation (with evolution)
may be less promising than improved genet-
ic algorithms, which simulate the same re-
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Fig. 1. Applications of evolutionary engineering.

cursive process of selection and recombina-
tion of pools of sequences, but run on exist-
ing computers (Fig. 1). In the end, the ad-
vantages of the different approaches depend
on the ruggedness of the sequence space
landscape of each particular problem (7).

Although DNA sequencing of the se-
lected solutions poses a practical problem
for molecular computation, this drawback
does not exist for computation with genetic
algorithms or for in vitro evolution or com-
puter simulations of natural evolution,
called artificial life (Fig. 1).

In summary, sequence evolution appears
to be a useful general tool for solving many
complex problems, whether the solution is a
number, sequence, program, or structure.
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