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(a,,: 4681 to 6516) was ligated into Stu I (a,,,.,: 
4674) and Xba I (polylinker) of a,,,.,. For a,,,., 
(a,,: 1 to 5050 and a,,: 4544 to 6516), the a,, 
fragment (a,,: 4544 to 6516) was ligated into the 
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a,,,., (a,,: 1 to 5050 and a,,: 4544 to 4667 and 
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Coactivator and Promoter-Selective Properties 
of RNA Polymerase I TAFs 

Holger Beckmann, Jin-Long Chen, Thomas OYBrien, Robert Tjian* 

Human ribosomal RNA synthesis by RNA polymerase I requires the activator UBF and the 
promoter selectivity factor SL1, which consists of the TATA binding protein ('TBP) and 
three associated subunits, TAFll 10, TAF163, and TAF148. Here it is shown that both 
TAFll 10 and TAF163 contact the promoter, whereas TAF148 serves as a target for inter- 
action with UBF and is required to form a transcriptionally active SL1 complex responsive 
to UBF in vitro. TAF148 also alters the ability of TBP to interact with TATA box elements, 
and the resulting complex fails to support transcription by RNA polymerase II. Thus, 
TAF148 may function both as a target to mediate UBF activation and as a class-specific 
promoter selectivity factor. 

Enhancement of transcription initiation by 
sequence-specific DNA binding proteins is 
a principal mechanism for regulating gene 
expression in animal cells (1). Promoter- 
selective transcriptional activators bind 
DNA and interact with specific compo- 
nents of the basal transcriptional apparatus 
in order to modulate gene expression (2). 
For example, some site-specific enhancer 
binding proteins directly target subunits of 
the basal transcription factor TFIID, which 
consists of TBP and at least eight TBP- 
associated factors called TAF,,s (3-8). 
Transcription of the human 18s and 28.7 
ribosomal RNA genes by RNA polymerase 
I (RNA Pol I) also requires a TBP-TAF 
complex called selectivity factor 1 (SL1). 
All four subunits (TBP, TAF,48, -63, and 
-1 10) are necessary to form an SL1 complex 
that supports transcription in vitro with 
purified RNA Pol I and the upstream bind- 
ing factor, UBF (9-1 1 ). Consequently, one 
or more TAFs in the SL1 complex are 
expected to recognize and bind core pro- 
moter DNA, whereas other subunits may be 
targets for activation by UBF. 

To test the activator binding properties 
of individual TAFs in the SL1 complex, we 
performed protein-protein binding assays 

with an affinity resin containing human 
recombinant UBF (rUBF) (Fig. 1) (1 2). As 
reported previously, UBF interacts with 
TBP (1 3). However, TBP alone is unable to 
support UBF-dependent activation of tran- 
scription by RNA Pol I (I 1 ). We therefore 
tested each of the TAFs associated with 

... . 

1 2  3 4 5 6 7 8 9  1 0 1 1 1 2  

Fig. 1. TAF,48 subunit of the SLl complex blnds 
to UBF. Partially purified FLAG epitopetagged 
UBF (72) was immobilized on protein A-Sepha- 
rose beads conjugated with antibodies directed 
against the FLAG epitope (10). This resin (lanes 3, 
6,9, and 12) and resins containing the antibodies 
but lacking UBF (lanes 2, 5, 8, and 11) were incu- 
bated with in vitro 35S-methionine-labeled TBP 
(lanes 2 and 3), TAF,48 (lanes 5 and 6), TAF,63 
(lanes 8 and 9), and TAFJ 10 (lanes 11 and 1'2). 

Howard Hughes Medical Institute, Department of Molec- Bound proteins were resolved by SDS-PAGE and 
ular and Cell Biology, University of California, Berkeley, visualized by autoradiography (10). Lanes 1, 4, 7, 
CA 94720-3204, USA. and 10 show 10% of the individual TAFs used in 
*To whom correspondence should be addressed. the binding assay. 
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SL1 and found that the smallest subunit, To  test the relevance of the UBF- 
TAF,48, bound efficiently and selectively TAF148 interactions, we assembled various 
to the UBF affinity resin (Fig. 1). In con- TBP-TAF complexes and assessed their 
trast, neither TAF,63 nor TAFll 10 was re- ability to mediate UBF-dependent activa- 
tained on the UBF resin to a level above tion (Fig. 2). Transcription reactions sup- 
background. Thus, TAF148 and TBP are plemented with RNA Pol I and rUBF but 
potential targets for interaction with UBF. no SL1, or reactions containing RNA Pol I 

Fig. 2. TAF,48 is required rSL1 rSL1(-48) 
fo; transcriptional activa- 
tion. (Upper panels) In + - + rUBF -A LZCI 
vitro transcription reac- - + + hSLllp + + + + - rUBF + + + rUBF 

tions used immunopuri- + + + Pol l + + + + + Poll + + + Pol l 
fied and peptide-eluted 
holo SLl (hSL1 ,,) derived 
from HeLa cells (lanes 2 
and 3) (12), an in vitro as- 
sembled quadruple SL1 
complex (lanes 5 to 8). or 
a triple complex lacking 
TAF148 but containing all 
three SLl subunits (lanes 
9 to 11). Assays con- ->. - 

F-' 
tained either -3 ng of peptide-eluted holo SL1 (lanes 
2 and 3) or 5 ng (lanes 5 and 9),10 ng (lanes 6 and lo), 97, . TAF~I 10 97, - 4 TAFI1 10 
and 20 ng (lanes 7,8, and 11 ) of assembled complex- 
es, respectively. Furthermore, reactions contained no 65' - 4 TAF163 65. - - 4 TAF163 
(-) or 10 ng (+) of human rUBF in addition to purified * 

- . TAF148 RNA Pol 1 (12, 26). Transcripts from the human rDNA 
45, ,. . TBP 45, - - 4TBP 

promoter were analyzed by nuclease S1 -mapping 
( 1  7).  (Lower panels) Silver-stained polyacrylamide 
gel of in vitro assembled holo SL1 composed of TBP, 31 ' 31 

FLAG-tagged TAF148, polyhistidine-tagged TAF163, rSLl rSLl(-48) 
haemaglutinin (HA)-tagged TAFll 10, and a partial SL1 
complex [rSL1(-48)] composed of TBP, polyhistidine-tagged TAF163, and HA-tagged TAF,l10. Complex- 
es were built and purified on antibody affinity resin and subsequently eluted with peptides corresponding 
to the epitopes (70. 1 1). Molecular size standards (in kilodaltons) are indicated on the left. Proteins and 
traces of immunoglobulin heavy chain (asterisk) are indicated on the right. 

and SL1 but no rUBF, produced very low 
levels of transcription from the human ri- 
bosomal promoter (Fig. 2). When either 
endogenous immunopurified holo SL1 or 
recombinant SL1 (rSL1) (Fig. 2) was added 
to these reactions, high levels of transcrip- 
tion were observed. However, when a par- 
tial SL1 complex containing TBP-TAF163- 
TAFI1 10 but lacking TAF148 [rSLl(-48)] 
(Fig. 2) was added, the level of transcription 
observed was similar to that found in the 
absence of endogenous SL1. A triple com- 
plex of the three TAF subunits without 
TBP was also unable to support UBF-de- 
pendent transcription (I I). These results, 
taken together with the observation that 
UBF can bind directly to TAF,48 and TBP, 
suggest that both TBP and TAF,48 are re- 
quired to assemble an active SL1 complex 
able to mediate UBF-dependent transcrip- 
tional activation. 

Although human SL1 on its own binds 
poorly to DNA, it interacts efficiently with 
the ribosomal RNA (rRNA) promoter in 
the presence of UBF (14). Upon UBF bind- 
ing to the upstream control element (UCE) 
of the rRNA promoter, SL1 is recruited to 
the template DNA and interacts selectively 
with an upstream region, which produces an 
extended footprint pattern (14) (Fig. 3A). 
To  test the DNA binding properties of a 
rSLl(-48) complex, we carried out de- 
oxyribonuclease I (DNase I)  protection ex- 
periments. In the absence of SL1, binding 
of UBF to the UCE resulted in a defined 
protected region (-97 to - 115), as well as 
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an enhanced cleavage site at position -96 
(Fig. 3A). However, when endogenous holo 
SL1 was present in the reaction with UBF, 
protected regions covered the entire UCE 
and extended to position - 165 (Fig. 3A). 
A similar extended footprint was seen with 
rSLl (Fig. 3A). In contrast, a rSLl complex 
lacking TAF,48 produced a smaller and 
weaker pattern of protection (-129 to 
-139; Fig. 3A). A similar restricted weak 
footprint was also seen with UBF and a 
dimeric complex consisting of TBP and 

TAF,63 (12), suggesting that TAF,63 can 
bind directly to promoter DNA sequences. 
Thus, although complexes lacking TAF148 
retain some ability to interact with the 
rRNA promoter, they do so in an altered 
fashion and are not active transcriptionally. 

To determine whether TAF,s other than 
TAF,63 contact promoter DNA directly in 
the context of a native SL1 complex, we 
performed in vivo ultraviolet (UV) cross-link- 
ing experiments (Fig. 3B). HeLa cells were 
exposed to UV light, and the resulting pro- 
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Fig. 4. TAF148 modulates the properties of TBP. (A) (Upper panels) Binding of TAF148 to TBP prevents 
TATA-box recognition. DNase I footprint analysis of TBP and TBP-TAF,48 dimeric complex on the AdML 
promoter. A DNA fragment containing the AdML core promoter sequence (-1 16 to +6l) was incubated 
with either no protein (lanes 1 ,3 ,4 ,  and 6), 15 ng of purified TBP (lane 2), or an equivalent amount of TBP 
in a dimeric complex with TAF148 (lane 5) before partial digestion by DNase 1 (20). The location of the 
fragments relative to the transcription start site (arrowhead) is indicated. The sequence of the TATA box 
(-25 to -30) is shown in addition to the region of protection by TBP (-19 to -36). (Lower panels) 
Silver-stained polyactylamide gel of purified human TBP (1 7)  and in vitro assembled dimeric TBP-FLAG- 
tagged TAF148 (70) complex. Molecular size standards (in kilodaltons) are indicated on the left. Proteins 
are indicated on the right. (B) TBP-TAF,48 complexes are unable to promote RNA Pol I I  transcription. 
TBP, TBP-TAF148 complex, and TBP-TAFl1250 complex were tested for their ability to support basal 
levels of transcription from the AdML promoter by RNA Pol I I  in a human in vitro transcription system (5). 
Each reaction contains, in addition to RNA Pol I I ,  all of the requisite accessoty factors (TFIIA, -llB, -HE, -IIF, 
and -IIH) essential for transcription by RNA Pol II. Reactions were performed either in the absence of the 
indicated proteins (lanes 1, 4, and 8) or in the presence of 3 ng and 20 ng of TBP (lanes 2 and 3) or with 
approximately equimolar amounts of TBP in complex with TAF148 (lanes 5 to 7) or TAFl1250 (lanes 9 and 
10). Reactions in lanes 4 to 7 contain in addition no (-) or 20 ng (+) of TBP. Transcripts were analyzed 
by primer extension (5). (C) TAF148 excludes TFllB but not TFllA from binding to TBP. FLAG epitope- 
tagged TAF148 was immobilized on protein ASepharose beads containing anti-FLAG (70). Resin (lanes 
2 and 5) and resins containing aTAFP8-TBP dimeric complex (lanes 3 and 6) were incubated with in vitro 
35S-methionine-labeled Drosophila TFllA (lanes 2 and 3) (23) or Drosophila TFllB (lanes 5 and 6). Resin 
containing polyhistidine-tagged human TFllB (25) (lanes 8 and 10) or a human TFIIB-TBP complex (lanes 
9 and 1 1) (72) were incubated with in vitro 35S-methionine-labeled TAF148 (lanes 8 and 9) or dTFllA (lanes 
10 and 11). Proteins were resolved by SDS-PAGE and analyzed by autoradiography (70). Lanes 1 
(dTFIIA), 4 (dTFIIB), and 7 (TAF148 show 10% of the individual 35S-methionine-labeled proteins used in 
the binding assays. The correct size of large dTFllA subunit is indicated. 

tein-DNA adducts were immunoprecipitated 
with antibodies to TAF,. After immunopre- 
cipitation with antibodies specific for TAF,63 
(anti-TAF163) and TAF, 110 (anti-TAF1l lo), 
a DNA fragment of the expected size was 
observed. In contrast, no promoter fragments 
were immunoprecipitated by control serum or 
anti-TAFl48. These experiments support our 
in vitro finding that TAF163 can bind di- 
rectly to promoter DNA. In addition, 
TAFI1 10 may also be a DNA binding com- 
ponent within the SL1 complex. These re- 
sults, together with our DNase I footprint 
experiments with rSLl(-48), suggest that 
TAFll 10 may be responsible for the fully 
extended footprint pattern of holo SL1 and 
that this extended DNA binding may be 
dependent on TAF148 as well as UBF. 

RNA Pol I core promoter elements differ 
from RNA Pol I1 core promoters (15, 16), 
and therefore TAFs may control the tem- 
plate recognition properties of TBP. We 
wanted to identify TAFs in SL1 that could 
modify the DNA binding properties of TBP 
and target SL1 to the RNA Pol I promoter. 
Whereas purified TBP alone produced a 
clear protected region centered around the 
AdML TATA box, TBP in a dimeric com- 
plex with TAF148 was unable to bind and 
protect the TATA box (Fig. 4A). In con- 
trast, TBP in a complex with TAF163 or 
TAF,l 10 can interact with TATA sequenc- 
es (12). These results suggest that binding 
of TAF,48 to TBP alters the ability of TBP 
to either recognize or bind to cognate 
TATA box sites. 

O n  the basis of these binding studies, one 
might hypothesize that class-specific TAFs 
can alter the promoter specificity of TBP- 
TAF complexes. However, it was possible 
that even if TBP cannot bind to its recog- 
nition site on the template, it nevertheless 
retains its ability to direct transcription by 
RNA Pol 11 (1 6, 17). Therefore, we assessed 
the ability of TBP-TAF148 complexes to 
mediate transcription by RNA Pol I1 from 
the AdML promoter in vitro. First, we com- 
pared the ability of TBP with that of a 
dimeric TBP-TAF148 complex (Fig. 4A) to 
direct basal levels of transcription from the 
AdML promoter in the presence of RNA 
Pol I1 and all of the requisite accessory fac- 
tors of its basal machinery (Fig. 4B). When 
in vitro reactions were conducted without 
added TBP, no detectable basal transcrip- 
tion by RNA Pol I1 was observed. When 
purified TBP (Fig. 4A) was added to the 
reaction, accurate initiation of transcription 
was observed. In contrast, if an equimolar 
amount of the TBP-TAF148 dimeric com- 
plex was added to the reaction, transcription 
was not detected. However, the inability of 
a TBP-TAFP8 dimeric complex to direct 
transcription was restored by addition of an 
excess of free TBP to reactions containing 
these dimeric complexes (Fig. 4B). As a 
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control, we assembleil a partial TFIID corn- 
plex contail1i1lg TBP and TAF112iL7 (5, 12). 
This ciimeric complex, unlike the  TBP- 
TAF148 dimer, full\- supported basal tran- 
scription by R N A  Pol I1 (Fig. 4B). Consist- 
ent  with these results is the  inability of SL1 
to substitute for TFIID o n  R N A  Pol I1 pro- 
moters and vlce versa (1 2) .  Taken together, 
these results establish that TAF148 can alter 
the  D N A  bi11di11~ properties of TBP so that 
it can no  longer recognize R N A  Pol I1 core 
pronloter elements. 

Our  results strongly suggest that the  lack 
of D N A  binding of a TBP-TAF148 d i ~ n e r  is 
sufficient to aholish transcriptional activa- 
tion. Howel~er,  TBP interacts directl\- with 
class I1 basal factors, TFIIA and TFIIB, anil 
the  recruitment of these factors by TBP or 
TFIID is reyulreil to assemble an  active 
R N A  Pol I1 i1litiatiol1 complex (18).  There- 
fore, TAF148 may also disrupt such class- 
specific ~nteractions.  As a test of this iilea, 
TAF148 or TBP-TAF148 colllplexes Lvere 
tethered to  a n  affinity resin by way of a 
FLAG-epitope tag o n  TAF148. Radiola- 
beled TFIIA or TFIIB was incubated with 
these complexes, and the proteins bound to  
the  resin were a~lalyzed h\- SDS-polyacryl- 
anlide gel electrophoresis (SDS-PAGE) and 
autorailiograph\- (Fig. 4C) .  TFIIA iloes 11ot 
Interact directl\- with TAF148, hut h o u ~ ~ i l  
efficiently to the  TBP-TAF148 resin. By 
contrast, TFIIB failed to  hind either 
TAF148 or the  TAF148-TBP complex. W e  
also Cerforrned binding assays 111 which 
TBP-TFIIB coruplexes tethered to a resin 
were mixed with radiolabeleil TAF148. Un-  
der these conilitions, TAF148 diil not bind 
efficie~ltly to the  TBP-TFIIB resin. In  con- 
trast, radiolabeleil TFIIA hou11ii efficle~ltly 
to  the  TFIIB-TBP dimeric complex al- 
though it 'lid not mteract wlth TFIIB alone 
(Fig. 4C) .  Thus, the  interaction of TAF148 
with TBP precludes TFIIB fi-om hlnding to  
TBP. It 1s possible that TAF148 anil TFIIB 
interact with overlapping surfaces o n  TBP 
( 1  9) .  Because TFIIA can bind the  TBP- 
TAF148 complex, only a subset i)f interac- 
tions betareen TBP and class I1 factors ap- 
pears to be affected. 

Here we have studied both the  promoter 
selectivit\- and UBF hindmg properties of 
TAFs associated with the  R N A  Pol I factor, 
SL1. W e  have s h o ~ v n  that the  presence of 
TAF148 in the SL1 complex is required to  
meiliate transcriptional activation by UBF. 
Strictly speaking, TAF148 should he consiil- 
ered as a slightly different kinil of coactiva- 
tor hecause it is also required for tra~lscrip- 
tion e17en in the  absence of the  activator 
UBF. For example, TAF148 ma\- help posi- 

tlon TAF111L7 within the  SL1 complex in 
order to produce an  active initiation cum- 
plex. It is also likel\- that the TAF148 inter- 
action with UBF will further stabilize the  
weak bindlng of T A F I l 1 0  to  e l e ~ n e ~ l t s  of 
the  promoter. Our  experiments suggest that 
both TAF163 anil TAFI1 10 can make D N A  
contacts when in the  SL1 complex. How- 
ever, u~llike a previous in vitro study, our in 
viva studies failed to  detect any direct D N A  
binding or contact with TAF148 (20) .  

Our  results also indicate that a TBP- 
TAF148 complex is unable to bind to 
TATA boxes. T h e  binillng of TAF148 to 
TBP appears to be sufficient to  block or 
conformationally alter the  D N A  bi~liling 
surface of TBP in a manner that pre\,ents 
recognition of the  TATA-box element, 
consistent with the  finiling that SL1 falls to 
hind D N A  containing TATA sequences 
( 12, 21 ). Therefore, different TBP-TAF 
complexes may meiliate class-specific pro- 
tein-protein i~lteractlons essential for the 
formation of acti1.e initiation complexes. 
For example, the  inability of SL1 to tran- 
scribe R N A  Pol I1 promoters nlay be due, in 
part, to the  incompatitxlity between sub- 
units of SL1 and mteractlons with other 
class-specific components of the  transcrip- 
tlon machinery (22, 23).  Thus, the  promot- 
er-selective and class-specific properties of 
different TBP-TAF complexes are reminis- 
cent of bacterial o-factors (24).  Distlnct 
TBP-TAF co~nplexes can be viewed as mul- 
tisubunit D-factors that bind class-specific 
core promoter elements and interact ~71th 
the  transcriptlonal initiation co~nplex to 
dlrect promoter-specific t r a~ l sc r lp t io~~ .  FLI- 
ture studies of TAFs, in both the  SL1 and 
the  TFIID complexes, should provide Inore 
detailed m e c h a ~ ~ i s m s  responsible for pro- 
moter specificity and gene regulation. 
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