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Solution Structure of the Activator Contact
Domain of the RNA Polymerase o« Subunit
Young Ho Jeon, Tomofumi Negishi, Masahiro Shirakawa,

Toshio Yamazaki, Nobuyuki Fujita, Akira Ishihama,*
Yoshimasa Kyogoku*

The structure of the carboxyl-terminal domain of the Escherichia coli RNA polymerase o
subunit («CTD), which is regarded as the contact site for transcription activator proteins
and for the promoter UP element, was determined by nuclear magnetic resonance
spectroscopy. Its compact structure of four helices and two long arms enclosing its
hydrophobic core shows a folding topology distinct from those of other DNA-binding
proteins. The UP element binding site was found on the surface comprising helix 1, the
amino-terminal end of helix 4, and the preceding loop. Mutation experiments indicated
that the contact sites for transcription activator proteins are also on the same surface.

Activation of gene transcription in a pro-
karyote system is triggered by several kinds
of transcription activators (1). In the E. coli
RNA polymerase holoenzyme—composed
of a core enzyme, a,BB’, and one of several
o subunit species (2)—one of the regions
responsible for transcription activation has
been localized to the COOH-terminal third
of the a subunit. Deletion of this region
does not interfere with the assembly of the
core or the holoenzyme, but reconstituted
RNA polymerase containing COOH-termi-
nal truncated a subunits cannot be activat-
ed by a group of transcription activator
proteins (3). This group of proteins con-
tains the class [ transcription factors, and
their contact sites have been placed at var-
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ious positions in the COOH-terminal do-
main (4). In contrast, the so-called UP
element in the 7B P1 promoter is required
for the transcription activation of the target
ribosomal RNA gene. The isolated a sub-
unit and its COOH-terminal domain pro-
tect the UP element region from deoxyri-
bonuclease I (DNase I) digestion (5), which
indicates that the COOH-terminal portion
of the a subunit is responsible for the con-
tact with cis-acting UP elements as well as
with trans-acting transcription factors (6).
Proteolytic cleavage experiments indicated
that the COOH-terminal portion that is
essential for the activation of polymerase
forms independent structural domains (7).
We isolated aCTD, a 98-amino acid
COOH-terminal fragment of the a subunit
(residues 233 to 329 plus methionine at the
NH,-terminus), and we determined its so-
lution structure by multidimensional het-
eronuclear magnetic resonance spectrosco-
py (8). The secondary structure elements
and the calculated three-dimensional (3D)
structures are shown in Fig. 1.

The structure of aCTD is compactly
folded and comprises four helices and two
long loops at the terminals of the domain
(Fig. 1B). Helix 1 (residues 264 to 273),
helix 2 (residues 278 to 283), and helix 4
(residues 297 to 309) are almost perpen-
dicular to each other. Helix 2 is short but
is essential for the formation of the hydro-
phobic core; the H-D exchange rates of
amide protons in this helix were found to
be very slow. Helix 3 (residues 286 to 292)
is roughly antiparallel to helix 4. Helix 4 is
the longest helix and shows the most typ-
ical amphipathic character. The two loops
that extend from helices 1 and 4 like arms
enclose the hydrophobic core and meet
each other through contact between
Phe?* in the NH,-terminal arm and
Trp*?! and Ile*?® in the COOH-terminal
arm. The NH,-terminal arm makes a turn
at Pro®*%, and the four residues before
Arg?® and the four residues after Pro?>®
form a-helical turns. The COOH-termi-
nal region from Trp*?! to Ile??, which
contains two proline residues, also shows a
sharp turn in which Pro3?? takes on the cis
configuration at the peptide bond. The
root-mean-square deviation (RMSD) for
the backbone heavy atoms of 50 structures
from Phe?* to Ile?¢ (Fig. 1A) is 0.67 A.
Although this core region is rich in arms
or loops, loop regions as well as helical
regions are well determined (the RMSD
for the region from Val?®* to Ser’® is 0.57
A). When the data were checked with
Eisenberg’s 3D profile analysis (9), this
folding was found to be reasonable. Be-
cause the NH,-terminal 16 residues pre-
ceding Phe?* and the COOH-terminal
three residues did not show any long-range
nuclear Overhauser effect (NOE), this re-
gion apparently does not form a single
definite structure.

aCTD is known to interact with the
rmB P1 promoter UP element in DNase |

Fig. 1. (A) Peptide backbone traces (N, Ca, C’) of 50 simulated annealing
structures of aCTD superimposed for residues Phe?° to lle326. Hydrophobic
residues (Phe, Trp, Val, lle, and Leu) are shown in yellow. (B) Stereo view of a
ribbon diagram representing the calculated mean structure folding of aCTD,
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produced with the program Molscript (16). The side chains of Phe?4®, Arg265,
and Trp32" are shown; H, helix. The atomic coordinates of the mean structure
were deposited at the Brookhaven Protein Data Bank (accession number
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Fig. 2. (A) (*°N,"H) HSQC spectra of the '*N-labeled «CTD and the complex with the UP-element
duplex DNA (7 7), showing part of the main chain and side chain amide resonances. Left: Reference
spectrum for 0.3 mM protein [in 0.5 M KCl and 20 mM phosphate buffer, H,O/D, O ratio 90:10, pH
6.0, at 30°C] with a 'H frequency of 500 MHz. The assignments of the amide resonances are
indicated. Asterisks denote the amide side chain resonances. Right: Spectrum of the protein in the
presence of 0.1 molar equivalent of the UP-element DNA. The solution conditions were the same as

for the reference experiment. The contour levels were adjusted to the protein concentrations.
Resonances that disappeared or were extremely broadened for the complex with DNA under high-salt conditions are indicated by dashed lines. (B) Mapping
of the residues with a broadening effect in ('*N,'H) HSQC spectra. The residues whose resonances completely disappeared under high salt conditions are
indicated in red (Arg2%5, Asn28, Leu?0, Thr2%2, Asn2®4, Leu??5, and Gly2%€), and those with an intermediate broadening effect are colored magenta (Thr283,
Val?®4, Ala®™, Ser??°, and GIu®®?). (C) Mapping of the proposed contact sites for CRP and OxyR in the structure of «CTD, produced with the program Ribbons
(17). The residues whose replacement renders RNA polymerase insensitive to activation by CRP are colored yellow and red (Leu?®°, Arg®®®, Asn?8, Cys?%°, and
Leu?79), and those in the case of OxyR are colored dark blue and red (Arg=c®, Asn?52, Cys?°, Lys?98, and Ser®9®); the residues in red are common to both factors.
Mutations in the region from Pro?® to Leu®®° also give weak reduction for CRP activation (15).

footprinting experiments. However, it is
not known which residues of aCTD are
involved in the interaction. To probe the
binding site, we performed chemical shift
perturbation experiments (10). Selective
signal losses were observed in the (1°N, 'H)
heteronuclear single quantum correlation
(HSQC) spectrum on mixing with a small
amount of a 25—base pair (bp) DNA duplex
with a sequence [d(TCAGAAAATTAT-
TTTAAATTTCCTC)] that corresponded
to the rmB P1 UP element (from —61 to
—37) (11) (Fig. 2A). Signal losses are ob-
served when the exchange rate between the
free and bound states is intermediate and
when the chemical shift is largely perturbed
by binding; in this case, the lost signals were
attributable to amides of most of the resi-
dues from Glu?®! to 1le?”” and from Thr??
to 11e3%. These residues are located in helix
1, the NH,-terminal half of helix 4, and the
loop region between helices 3 and 4 in the
structure of aCTD (Fig. 2B). This observa-
tion indicates that helix 1 and the sur-
rounding region are directly involved in the
interaction with DNA. Together with the
fact that the substitution of Arg?®® to any
other amino acid residue, even to Lys, abol-
ished the binding to the UP element (12),
our results strongly support the idea that
helix 1 recognizes the base sequence of the
UP element. Asn®®® on the same side of
helix 1 should also be involved in the rec-
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ognition. Because one helix and the NH,-
terminal of another perpendicular helix
make a binding surface to DNA, this feature
may seem reminiscent of the helix-turn-
helix (HTH) motif found in DNA-binding
proteins. However, helices 1 and 4 of
aCTD are distinct from the canonical or
extended HTH (13); not only is there no
direct connection between the two helices,
but also the direction of one of the helices
is opposite to that of HTH.

The COOH-terminal region of the «
subunit is claimed to be the contact site for
class I transcription factors (4). The muta-
tions that largely reduced activation by
CRP [adenosine 3’,5’-monophosphate
(cAMP) receptor protein] were all mapped
to the narrow region between residues 260
and 270 (12, 14) (Fig. 2C). All the critical
residues except Leu?® are in helix 1. Essen-
tial residues for activation by OxyR (an
activator for oxidative response genes) are
also clustered in two narrow regions, resi-
dues 265 to 269 and 293 to 300 (15). These
two regions correspond to helix 1 and the
end of helix 4, respectively. The two sepa-
rate regions in the sequence are spatially
close to each other in the tertiary structure,
and they overlap with the contact sites for
the UP element of the rmB P1 promoter.

aCTD is one of the focal points in the
control of transcription. Mutations in
aCTD that affect the activation of many
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transcription activator proteins have been
reported, and these mutations have been
mapped at various positions of the domain.
Our results may lead to the determination
of interaction surfaces for activator proteins
through a better understanding of whether
such mutations affect the structure or inter-
action of the domain.
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A Population Genetic Test of Selection
at the Molecular Level

M. F. J. Taylor,” Y. Shen, M. E. Kreitman

The role of natural selection in molecular evolution has been inferred primarily by rejection
of null hypotheses based on neutral theory, rather than by acceptance of specific pre-
dictions based on selection. In this report, a population genetic test of a specific prediction
for selection on DNA polymorphism is presented. Pyrethroid insecticide use constitutes
an experiment for which form of selection and molecular target (voltage-gated sodium
channels) are both known. As predicted, differential pyrethroid selection on tobacco
budworm populations generated significant geographic heterogeneity in sodium channel
marker allele frequencies, compared with arbitrary loci.

Many studies have sought to test the null
hypothesis of neutral evolution of DNA
sequence variation in populations. Howev-
er, the lack of specific prior predictions
based on selection has weakened such tests.
Even for the most well-studied case of the
high-to-low latitudinal clines in the Adh
fast-slow polymorphism in Drosophila mela-
nogaster, the form of selection presumed to
maintain this polymorphism remains elu-
sive, although patterns of polymorphism are
consistent with a model of balancing selec-
tion (1).

If a specific form of selection is expected
at a particular locus, then a prediction may
be developed on the basis of selection rath-
er than neutrality, which may be tested
with the use of appropriate statistics. Differ-
entiation in allele frequencies among pop-
ulations can be estimated by F_, the be-
tween population component of standard-
ized genetic variance. Population structure
and historical contingencies (range expan-
sions or contractions) have genome-wide
effects on gene frequency variation between
populations, whereas selection affects vari-
ation only at target loci. Differentiation in
the form of clines of allele frequency for
some allozyme loci, and not for others, has
been taken as evidence that spatially vari-
able selection has been acting at such loci,
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whereas gene flow has homogenized fre-
quencies at other unselected loci (2). How-
ever, clinal patterns for some loci may result
from historical patterns of colonization and
subsequent admixture, whereas nonclinal
loci are homogenized by selection, acting
uniformly in space and causing convergence
of frequencies over a wide area (3). The
study of nucleotide variation has permitted
some resolution of this dilemma for the Adh
cline in D. melanogaster (4). Such studies
highlight the difficulties of testing for selec-
tion at the molecular level in natural pop-
ulations, in the absence of prior expecta-
tions about the strength, duration, or loci of
action of selection.

The widespread use of insecticides in
agriculture has resulted in the rapid evolu-
tion of resistance for many pest species.
Such natural “experiments” can enable ex-
plicit prediction of the outcome of selection
at the molecular level. Pyrethroid insecti-
cides act on voltage-gated sodium channels
in nerve membranes (5). Resistance to the
pyrethroid permethrin in a field-derived
strain of the tobacco budworm (Heliothis
virescens), a major cotton pest, is linked to a
DNA marker for a sodium channel locus
hscp, homologous to the para locus of D.
melanogaster (6). Levels of resistance are
known to vary considerably among popula-
tions, and resistance has arisen in response
to selection in just the last 10 years (7).
Population genetic surveys in North Amer-
ica, ranging from Texas to Georgia for 13
allozyme loci (8), and from Sonora, Mexico,
to Georgia for mitochondrial DNA markers
(9), have shown that tobacco budworm
populations are little differentiated, which
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