
Phase Diagram of lron by in Situ X-ray 
Diffraction: Implications for Earth's Core 

lines of E-Fe shifted to  laxer energies or 
higher d spacings, i~ldicating thermal ex- 
Danslon of the  iron. There was little chanee " 
in the  relative intensity of the iron diffrac- 
tion pattern in colnparison to that of 
A120,, and thermal broadening of the  dif- 
fraction balds  was negligible. Near 2580 K, 
however, the  diffraction lines of E-Fe weak- 
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The phase diagram of iron has been studied to 130 gigapascals (1 gigapascal = l o4  
atmospheres) and 3500 kelvin by a combined laser-heated diamond-anvil cell and x-ray 
diffraction technique that provides direct identification of the solid phases. lron in the 
hexagonal close-packed (hcp) phase (E-Fe) is stable from 50 to at least 110 gigapascals 
at high temperatures. The wide stability field of E-Fe indicates that this polymorph should 
currently be considered the most relevant solid phase for Earth's core. The triple point 
between the y ,  E ,  and liquid phases is located at 2500 i 200 kelvin and 50 i 10 
gigapascals. There is evidence for a phase with a double hcp structure below 40 giga- 
pascals and for another transition above 11 0 gigapascals and 3000 kelvin. 

exled and disappeared, illdicating that the  
sample in the  laser-heated spot had melted. 
Upon cooling, each of the  diffraction lines 
of E-Fe reappeared (Fig. 1, top curve). T h e  
quenched E-Fe crystallized x i t h  preferred 
orientation of the  1100) ~ l a ~ l e  in the  dif- 
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fraction direction. After lheat~ng, a small 
circular trace n.as evident visuallv in  the  
laser-heated area, providing furthe' 11ldica- 
tion of melting. These lneasurernents also 
bracketed the  melting temperature at this 
pressure between 2280 and 2580 K. 

A t  50 GPa. we observed E-Fe LID t o  2480 

Because  iron is the  dominant comnollent ant: this i~lcludes differences amone the  
of Earth's core, information 0 x 1  the behavior 
of iron at high pressures and telllperatures is 
fundamental to Earth science. In  particular, 
deter lni~la t io~l  of the  phase diagram of iron 
is central to understandine a number of 

static measureine~lts (5-7) and between 
static and shock-wave results (7-1 0) .  Third, 
the structure and stability field of the  P 
phase remain to be clarified. Fourth, the  
nature of the  290-GPa transitLon suggested 

K and co~lclude that the  lneltmg tempera- 
ture is 2530 ? 50 K. This value is consistent 
\\71t11 results renorted in 15). T h e  E-Fe is the  

properties and processes of the  planet's deep 
interior, i ~ ~ c l u d i n g  the  temperature profile, 
cheinical composition, energy balance, dy- 
narnics, and geomagnetism (1-4). High- 
Dressure diamond-anvil cell 15-7) and 

~, 

only solid phase observed up to a t  least 110 
GPa. W e  noticed during laser heating a t  96 
GPa (Fig. 2) that the  diffraction peaks shift- 
ed and changed in intensity, particularly 
the  101. 110. and 112 reflections. All  of the  

by shock-xave experilnents 1s unk11on.11 
(10).  A reentrant a' (bcc) phase (2 )  or the  
p phase ( 5 ,  6 )  was proposed to explain the 
transition; ho\\~ever, subsequent theoretical 
calculations indicated that the  bcc structure ~, 

shock-wave experilnents (7-10) are provij- 
ing important constraints o n  the  phase re- 
lations over a groxing range of pressure and 

is lnecha~lically ~ ~ n s t a b l e  under these con- 
ditions (3, 14). 

W e  developed an  integrated diamond- 
anvil cell, x-ray, and laser-heating tech- 
nique to examine the  iron phase diagram by 
dlrectly probing the  crystal structure of the 
phases in situ at high temperatures and 
pressures. This systern consists of three corn- 
ponents (15):  ( i )  a Nd-yttrium-alumillurn- 
garnet laser-heati~lg system to heat the  sam- 
ple 111 a diamond-anvil cell, (li) a m ~ c r o -  
scope system to  measure temperature and 
view the  samnle for aliellrne~lt and direct 

, , 

features can be understood in terms of E-Fe 
and A120,, and no  new features developed 
a t  high temperatures. T h e  above measure- 
ments indicate that bet\veen 50 to 110 GPa, 
E-Fe is the stable solid ~ h a s e  at least to the  

temperature. Ho\\lever, the  accurate deter- 
mination of the  ~ h a s e  diagram of this cru- 
clal element u~ lde r  Earth-core conditiolls is 
st111 a formidable experimental problem be- 
cause of the extreme pressure and tempera- 
ture (P-T) co~lditions involved. 

Five phases of iron, namely ct [body- 
centered cublc (bcc)], y [face-centered cu- 
bic (fcc)], 6 (bcc),  E (hcp) ,  alnd p ( n o  
structural information). have been renort- 

melting curve proposed in (5) .  
There xere  i~ldications of a tra~lsition a t  

higher pressures (above 110 GPa)  and high- 
er temperatures. Diffraction peaks charac- 

40 

35 ' I1 50 GPa , , 

ed. Crystal structures and phase boundaries 
of a-, y-,  6-, and E-Fe are \veil determined at 
l o x  pressures (below 20 GPa) .  As indicated 
by x-ray diffraction measured to  300 GPa  at 
ambient temperature, E-Fe is the  stable 
phase of iron a t  300 K to pressures of Earth's 
core (1 1 ). Phase boundaries at high temper- 

- 
observation, and (iii) a synchrotron x-ray 
and energy-dispersive diffraction system. A 
small piece of thin iron foil is loaded 111 a 
diamond cell, together with a pressure me- 
d i ~ ~ m  such as argon, A1203, or LIF. Poly- 
chromatic (white) x-ray radiation from the  
s v n c h r o t r o ~ ~  source is coaxiallv aliened to , - 
the  center of laser heating spot, and the  
diffraction from the  sample is recorded a t  a 
fixed scattering angle 2 0  as a function of 
energy. T h e  ternperature of the  sample is 
sirnultaneousl~ determined from the  ther- 

atures and pressures, ho\vever, have been 
deternlined prlmarlly by indirect methods. 
Because these do  not ~ r o v i d e  uneauivocal 
identification of solid phases, several key 
aspects of the  phase diagram are uncertain. 
First, the  location of the  E-y-liquid triple 
point is not xel l  established ( 1 ,  5, 12,  13). 
Second, various deterrninatio~ls of the  melt- 

Fig. 1. The x-ray diffraction patterns of the aser- 
heated iron at 50 GPa. showing the melting of iron 
at 2580 K. Starting at 300 K (bottom curve; dvid- 
ed by 50 for clarity!, the sample was heated 
through 2280 K to 2580 K, and then cooled back 
to 300 K (top curve; multiplied by 3). The E phase 
is ev~dent from four strong features-the 100 dif- 
fraction peak at 16.44 keV. 101 at 18.78 keV, 102 
at 24.36 keV, and 1 10 at 28.48 keV-and a weak- 
er feature of the 200 peak at 17.80 keV (Ed = 

33.94 keV A. where E is energy and d is the d 
spacing). The iron melted from the E phase, sug- 
gesting that the ?-&-liquid triple point I S  located in 
the viclnity of this pressure. 

ma1 emission' from the  laser-heated area. 
T h e  pressure of the  sample is deter~nined 
either bv the  eauation of state of the  sarnnle 

ing temperature above 50 GPa are discrep- or frori  the  i'uby lumi~lescence met1;od 
116). 
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There was a distinct change in the  x-ray 
diffraction pattern of iron upon ~ne l t i~ l f i  
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durillg laser heating. For example, at 50 
GPa (Fig. 1 )  a t  least four strong features 
fro111 E-Fe and several xeak  bands from 
A1,0, xe re  observed a t  300 K. Duri11g laser 
heating to 2280 K,  all of the  diffraction 
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teristic of the  E phase xe re  observed belon. 
2500 K at 125 GPa  (Fig. 3 ) ,  but these 
diffraction lines weakened significantly 
above 2500 K and eventllally iiisappeared 
above 3300 K. Moreover, a new lice Jevel- 
oped at 15.22 keV (d = 2.229 A )  above 
2920 K,  xhe re  the  diffraction lines of E-Fe 
disappeared. T h e  new band was lnot associ- 
ated with A120, but arose from the  iron 
portion of the  sample. I11 addition, the  104 
and 110 lines of A1203 should h a y  been 
located at 14.62 keV (4  = 2.321 A )  and 
15.68 keV (d = 2.164 A ) ,  respectively, at 
this pressure (1 7). W e  were able to  quench 
the  new diffraction band a t  ambient tern- 
perature after heating. T h e  iron sample 
quenched from 3300 K showed no  relation 
to the  E phase; in addition, there n.as little 
change in vlsual appearance of the  sample. 

96 GPa 

Fig. 2. The x-ray d~ffract~on patterns of the laser- 
heated Iron at 96 GPa, showng that p-Fe 1s not 
evdent to 2800 K at t hs  pressure. The heat~ng 
cycle starts with the bottom curve and moves 
upward. The E phase is evident at all of the tem- 
peratures by the 100, 101, 102, 110, and 112 
bands at, respect~vely, 17.1 5, 19.46, 25.10, 
29.64, and 34.97 keV (Ed = 33.94 keV A). Other, 
weaker broad features are from AI,O,. Also no- 
ticed s the recrystallizat~on of &-Fe above 2300 K. 

35 
125 GPa 

E (keV) 

Fig. 3. The x-ray diffracton patterns of the laser- 
heated iron at 125 GPa, showing that a new dif- 
fraction line (arrow) develops as the diffraction 
Ines from E-Fe disappear above 3000 K, The 100, 
101, 11 0,  and 11 2 refectons of E-Fe are located 
at 17.33, 19.71, 30.07, and 35.81 keV, respec- 
tively (Ed = 33.94 keVA). The heating cycle starts 
with the bottom curve and moves upward. 

1474 

W e  co~lclude that the  loss of the  diffraction 
intensity of E-Fe was not  a result of melting 
but instead arose either from a previously 
~~ndiscloseil high P - T  solid-solid transition 
or from a reaction betxeen Fe and A1203 
11 8). T h e  transition ternoerature was close , , 

to that previously reported for melting at 
this pressure (5).  It is therefore possible that 
these observat io~~s refer to the same transi- 
tion, although our current understa~lding of 
the transition is too oremature to comolete- 
ly rule out alternative hypotheses. 

T h e  P-T conditions of the present mea- 
surements are compared in Fig. 4 x i t h  phase 
bou~ldaries taken from the literature. Be- 
tween 50 and 110 GPa, onlv the h c ~  diffrac- 
tion pattern is observed. ~ h e s e  reshts con- 
trast x i t h  the previously suggested stability 
field of P-Fe. T h e  P phase was origillally 
suggested o n  the basis of an  abrupt change in 
either the laser Dower or the reflecteci light 

u 

intensity as a f i l~lc t io~l  of the sanlple temper- 
ature during laser heating (5, 6).  Such 
chalnee does not necessarilv reflect a struc- 
turalihase transition; it colild also be caused 
by electronic transitions or even by mecha- 
llisnls unrelated to phase transitions ( I  9).  

Our  results also provide information on 
the phase diagram at lo\ver pressures. Be- 
tween 15 and 40 GPa at moderate tempera- 
tures, n.e f o u ~ ~ d  a phase of iron that yields a 
diffractio~l oattern that call be indexed as a 
double hcp (dhcp) structure, that is, with an  
A B A C  stacking sequence (20). T h e  dhcp 
phase has also been observed in a recent 
study below 40 GPa  (21). Our measurements 
indicate that from 40 GPa to bet\vee11 110 
anti 150 GPa, the dhcp phase is not observed 

0 
0 50 100 150 

P (GPa) 

Fig. 4. Constraints for the phase diagram of Iron. 
Various symbols indicate the phases of iron as 
determined by in situ x-ray diffraction at high pres- 
sures and temperatures: liquid Iron (a), E-Fe (01, 
& ' Y e  (A), y-Fe (A), and new crystalline (W). The 
area indicated by the large rectangle constrains 
the locat~on of the E-y-quid tr~ple po~nt.  The 
hatched area lndcates the P-T region of whlch the 
E' phase forms between 15 and 40 GPa. Previ- 
ously reported phase boundaries are also repro- 
duced for comparison: melt~ng Ines are repro- 
duced from (5) (upper dashed lines), from (6) (up- 
per dotted line), and from (7) (dashed-dotted line), 
and E - P  boundar~es are shown from (5) (lower 
dashed line) and from (6) (lower dotted line). 
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in most of the previollsly suggested P-Fe field 
(5 ,  6).  This phase, xh ich  we tentatively 
called 8'-Fe, was observed rnostly in a por- 
tion of stability field previously assigned for 
y-Fe, and a small corner of the field for P-Fe. 
T h e  y-phase was observed at higher temper- 
atures than the 8'-phase to 50 GPa, but not 
at higher pressures. These results indicate 
that y-Fe and E'-Fe are lo\ver pressure phases 
and thus are not relevant to the core (135 to 
363 GPa).  

111 summary (Fig. 4),  our results i~ldicate 
that the line between the y or E' phases and 
the E phase should be either straight or con- 
cave up (22). Considering that the meltillg 
ternDerature determined here agrees x i th  val- 
ues reported earlier (5 ,  6),  one call extrapo- 
late the y ( ~ ' ) - E  phase line to the melting line 
1x1 Fig 4. This indicates that the E-y-liquid 
triple po111t is at 2500 ? 200 K and 50 i 10 
GPa, substantially lower than 100 GPa. 
Above 50 GPa, we observed neither the E' 

phase nor any diffraction lines that collld be 
indicative of other new phases (for example, 
p- or a-Fe). Only the E phase is evident 
between 50 and 110 GPa, in a xide range of 

u 

temperatures at least to the melting lille re- 
ported in (5).  Above 100 to 120 GPa, ho\v- 
ever, the nature of the iron phase diagram 1s 
not xell  established (Fig. 3).  W e  conlecture 
that either a nen. solid-solid transition or 
more likely a chemical reaction occurs above 
110 GPa and 3000 K in Fig. 4. 111 this case, the 
actual rneltinr tem~eratures of iron at these - A 

pressures could be substantially higher than 
those reported in (5). 
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A sequence of images from very long baseline interferometry shows that the young radio 
supernova SN 1993J is expanding with circular symmetry. However, the circularly sym- 
metric images show emission asymmetries. A scenario in which freely expanding su- 
pernova ejecta shock mostly isotropic circumstellar material is strongly favored. The 
sequence of images constitutes the first "movie" of a radio supernova. 

T h e  recent discover\; i I ) bv very lone hase- offers the ovvort~lllitv to monitor a suk3emova , ,  , & 

line interferometry (VLBI) of a shell-cke ra- expansion in a manlier that is free froin mod- 
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(Tahle 1). Images were ohtailled at 3.6 cm 
and 6 cm (Fig. 1).  The  image from November 
1993 is from the discovery of the shell-like 
structure ( I ) .  The image from May 1994 was 
obtained a i t h  a laree and well-calibrated ar- " 

ray; therefore, all details in it are reliable. 
However, to obtain the images from Septem- 
ber 1993 and Februarv 1994. we used circu- 
larly symmetric models of sizes extrapolated 
and interpolated from the images from No- 
vember 1993 and hlay 1994, respectivel\-, as 
initial models in the mapping process. For the 
September 1993 image, extrapolation was 
needed because there was insufficient inter- 
ferometric resolution to resolve the shell; and 

below 20 GPa (13). Second, the present study 
shows that the s - y - q u d  trple pont 1s located at the 
v ~ c n t y  of 50 GPa. To satsw these two condtons. 
the E-y phase Ine cannot be concave down as pre- 
sented in (5) and should be either concave up or at 
least straght. However, considertig the exstence of 
e'-Fe and the magnetc propertes of y-Fe and e'-Fe 
(201, the exact nature of the y-s phase line could be 
substantally more cotnplcated 
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for the February 1994 image, il~terpolation 
\\.as needed hecause there were i~lsufficient 
data (UV coverage) to reconstruct the image 
unambiguously without a priori information. 
The  procedure we followed allowed us to re- 
liably compare the sizes of the images ob- 
tained from the data at each evoch and thus 
to obtain the allgular size growth rate and to 
learn how the e~nissioll enhancement in the 
southeastern part of the images evolved a i t h  
time. The latter question is important in dis- 
tinguishing which features of the emission 
correspond to traces of the initial explosioll 
and which are induced by the dynalllics of the 
evolution. I11 suite of the n~aveleneth differ- 
ence, the image at 6 cm (Fig. 1)  from Sep- 
tember 1994 shows a remarkablv similar struc- 
ture to those shown in images dbtained at 3.6 
cm at earlier epochs. However, comparison of 
the size of the imaee from this enoch with " 
those from previous epochs is done with cau- 
tion, hecause relevant opacity effects may not 
be accou~lted for. 

Although the interferometric phases for 
September 1993 contain key information 
about the emission asymmetry, the source 
\\.as not large enough then for us to distin- 
guish shell emission from disk ernissio~l even 
when we used the largest available Earth- 
sized array: A range of limb-brightened disk- 
like images, each a i t h  a characteristic size, 
are compatible with these data (image de- 
generacy) (4). Therefore, to determine the 
expansion rate witho~lt  bias, we used the 
backnrard-extrapolated image from our No- 
vember 1993 and May 1994 images in Fig. 1 
in the mapping process to hreak this degen- 
eracy and thus to estimate a size (4).  

From observation in February 1994 we 
have high-quality data, but from only a 
three-antenna array. T h e  interferometric 
amplitude data require a shell-like structure, 
and the interferometric ~ h a s e  data r e u ~ ~ i r e  
an  emission asymmetry in the shell. Use of 
a point-like source as an  initial model made 
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