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Cation Dynamics and Diffusion in Lithium 
Orthosilicate: Two-Dimensional Lithium-6 NMR 

Zhi Xu and Jonathan F. Stebbins* 

Many geological and technological processes depend on diffusion in crystalline silicates 
and oxides, but models of the dynamics of diffusion have only rarely been based on 
relatively direct microscopic information on the rates and energetics of the hopping of 
cations from site to site. Two-dimensional nuclear magnetic resonance (NMR) exchange 
spectra for lithium-6 in lithium orthosilicate (Li,SiOl) provided a detailed picture of the 
hopping rates of Lit ions among structurally dist~nct sites and helped to define the 
diffusion pathway. Rates and activation energies depended measurably on site geometry, 
and bulk electrical conductivity was accurately predicted. 

T h e  diffusion of cations in crvstalline ox- 
ides and silicates controls a wide range of 
geochemical and technological processes, 
such as the homogenization of zoning pro- 
files of crystals formed in magma chambers, 
the exsolution of immiscible phases during 
the cooling of materials formed at high 
temperature, and the intergrowth and ad- 
hesion that bond grains together to make 
useful ceramics. In,most ionic conductors, 
which are of interest as solid-state electro- 
lvtes. cation diffusion controls electrical , , 

properties. Understanding of the mecha- 
nisms of diffusion has largely been based on 
theoretical treatment of macroscopic mea- 
surements of diffusion, conductivity, and 
NMR spin-lattice relaxation times. This has 
generally resulted in microscopic models 
that include parameters describing the fre- 
quency, direction, distance, and energetics 
of the hopping of cations from site to site. 
However, relatively direct observations of 
cation hopping dynamics have usually not 
been obtainable. In particular, in complex 
materials with multiple cation (and vacan- 
cy) sites, and thus multiple pathways for 
diffusion. it has been difficult to connect 
processes at the local and the bulk scale. For 
example, apparent activation energies for 
NMR spin-lattice relaxation are often 
much less than those observed for diffusion, 
in part because the former may sample lo- 
cal, within-site, as well as through-going, 
cation motion. 

Stebbins et al. have recently reported 
one-dimensional (ID) ,Li magic angle spin- 
ning (MAS) NMR spectra for lithium or- 
thosilicate (Li4Si04) in which the ex- 
change of Lit ions among multiple sites was 
observed as a collapse of multiple peaks to a 
single averaged line ( I ) .  This ceramic ma- 
terial has been extensivelv studied as an 
ionic conductor and as a high Li refractory 
for fusion reactor blankets (2-4). Using a 
simple random walk model, we found that 
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the average cation-exchange rate deduced 
from the NMR spectrum at 90°C was equal 
to that derived from extrapolation of higher 
temperature conductivity data. However, 
because the structure of Li4Si04 is complex 
(5, 6), many questions have been raised 
about the details of cation hopping. All of 
the Lit ions could be involved in diffusion, 
or perhaps only a subset of cations in par- 
ticular sites is important. A diffusion path- 
way characterized by a single activation en- 
ergy could dominate, or perhaps multiple 
energetically distinct barriers need to be 
considered. The 2D. high-resolution, NMR , " 

exchange experiment is one of the few 
techniques that can provide details of ex- 
change rates among multiple sites. This ap- 
proach has been widely used to study dy- 
namics in organic polymers (7) and in 
structured liquids, including molten halides 
(8) and silicates (9), but applications to 
crystalline inorganic materials have been 
very limited. In this report, we discuss how 
we have applied 2D NMR, as well as a more 
detailed analysis of 1D spectra, to cation 
motion in Li4Si04, in order to explore some 
of these dynamical complexities. 

Figure 1A shows 1D spectra collected at a 
series of temperatures ( 1 ,  10). At ambient 
and lower temperatures, these spectra show 
four partially resolved peaks corresponding 
to LiO,, LiO,, LiO,, and LiO, polyhedra (1, 
1 1 ). These peaks are motionally averaged at 
higher temperatures, requiring Li+ hopping 
among all sites and not just local within-site 
motion or self-exchange. These spectra have 
been simulated with a simple four-site ex- 
change model (Fig. 1B) similar to that used 
in a recent study of species exchange in a 
silicate liquid (12). The resulting average 
hopping rates are in good agreement with 
those expected from conductivity data (1 3), 
indicating that all Li+ ions participate in 
conduction. However. the derived activa- 
tion energy of 54 kJ/mol is somewhat lower 
than that for conductivity at 200" to 300°C 
(Table 1) (3). This difference might be due 
to differences in the actual hopping frequen- 
cies among different sites. At lower temper- 

ature, the difference in hopping frequencies 
is small and most exchange events contrib- 
ute to the total peak shape. At higher tem- 
perature, hopping rates among some sites 
with higher activation energies are so fast 
that they have already been fully averaged to 
a single peak, which is thus no longer sensi- 
tive to temperature changes. In this case, the 
1D peak shape simulation will underestimate 
the real hopping rate, leading to an apparent 
activation energy that is lower than the true 
mean value. 

We observed 2D pure-absorption ex- 
change spectra at 33" and 59°C and a range 
of mixing times (14). Typical data are shown 
in Fig. 2. In spectra of this type, if exchange 
is slow relative to the selected mixing time, 
the normal 1D spectrum appears on the di- 
agonal and other peaks are absent. As ex- 
change between any pair of sites becomes 
more rapid or mixing time becomes longer, 
cross peaks appear at the coordinates of the 
corresponding two peaks. The cross-peak in- 
tensities scale with the probability of ex- 
change during the mixing period. We exam- 
ined the potential complication of spin dif- 
fusion (as opposed to actual physical diffu- 
sion of cations) by varying the dilution of the 
6Li and thus the extent of homonuclear di- 
polar coupling. The similar cross-peak inten- 
sities for 20% and 95% 'Li-enriched samoles 
observed under the same experimental con- 
ditions clearly showed that spin diffusion was 
negligible. The large variation of the cross- 
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Fig. 1. (A) Series of 1 D 6Li MAS NMR spectra of 
Li,SiO, acquired at the temperatures shown. (B) 
Simulated peak shapes, assuming exchange 
among four sites at a single mean exchange fre- 
quency (ss) as shown. Peaks correspond to Li in 
sites with a varying oxygen coordination number 
(see Fig. 2). 
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peak intensity with temperature supports this 
conclusion. 

The effect of exchange can be most 
clearlv seen in 1D slices throueh the 2D - 
spectra taken at the position of the LiO, 
peak (Fig. 3 ,  A and B ) .  All types of Lion 
polyhedra are involved with the exchange 
process at 33" and 59"C, and there is not a 
distinct population of nonexchanging Li+ 
ions, as suggested previously (15). An ex- 
change process among sites with the same 
coordination number ("self-exchange"), 
which will lead to broadening of the on- 

Fig. 2. Two-dimensional pure-absorption ex- 
change NMR spectra of Li4Si04 at 33°C with mix- 
ing times of (A) 47 ms and (B) 188 ms. Coordina- 
tion numbers for Li sites, and exchange peaks 
(most clearly visible for the longer mixing time), are 
labeled. The w, axis is horizontal. 

diagonal peaks with longer mixing times, 
seems to be negligible at the time scales and 
temperatures of our experiments. 

We extracted the Li+ hopping rates by 
fitting the areas of cross peaks in the 1D 
slices (I,,) as a function of the mixing time 
(7,) with the equation 

to derive the first-order rate constant for 
exchange from site j to i (Kij) (1 6). Here, 
MO, is the intensity at T - 0 for site j. The 
requirement that I,, = I,, is satisfied with an 
average deviation of 10%. The derived rate 
constants shown in Table 1 agree reason- 
ably well with 1D simulation results and the 
extrapolation of conductivity data, if we 
again assume a random walk model and the 
participation of all cations in through-going 
diffusion (1 3). In materials in which there is 
an excess of lattice sites over conducting 
ions, such as in Li4Si04, where 56 Li+ ions 
are distributed among 126 sites, the concen- 
tration of vacancies is expected to be only 
very weakly temperature-dependent. Be- 
cause the vacancies necessary for conduc- 
tion are already present, in Li4Si04 it is also 
likely that all, or at least a large fraction of, 
Li+ ions contribute to the conductivity 
(1 7). Our NMR results support this sugges- 
tion. Activation enereies were calculated - 
from the effect of temperature on rates and 
are uncertain by about ? 10%. 

The most interesting result of these ob- 
servations is that both hopping rates and 
activation energies are different for different 
pairs of Li+ sites, giving direct evidence for-a 
distribution of energy barriers for diffusion. 
Diffusion of Li+ in Li4Si04 probably in- 
volves the i u m ~  of a cation into a vacant , A 

site, then the jump of another ion into the 
newly emptied site. This suggestion is sup 
ported by the observation that in the Al- 
substituted phase Li3,7Al,-,1Si04, where 
many extra vacancies are introduced, both 

Table 1. Rates (K,,) (in hertz) and activation energies (Ed of exchange among LiO, sites in Li,SiO,. Rates 
derived from 2D NMR data, and from simulations of 1 D peak shapes, are compared with those derived 
from measured conductivity, based on a simple random walk model (1 3). The latter are extrapolated from 
above 200°C with the high and low values of Ea shown, which bracket the range of experimental results 
(15). The weighted average for Ea from the 2D NMR data is 67 kJ/mol. The 1 D NMR data were collected 
at all temperatures shown; 2D data were collected at 33" and 59°C only. We extrapolated other 2D values 
using the Ea values shown. 

Temperature ("C) 
Data source Ea 

7 33 44 59 76 90 105 (kJ/mol) 

20 exchange 
K3-6 0.74 5.4 11.3 25.3 75 151 312 54 
K4-€3 0.85 6.1 12.7 28.4 81 168 345 54 
K5-6 0.58 4.7 10.2 24.0 73 158 272 57 
K4-3 0.35 5.3 14.6 44.0 187 508 1372 74 

1 D exchange 1 5 14 25 80 200 400 54 
Exchange from conductivity 

Low E, 0.3 4.2 11.3 39 139 370 979 73 
High Ea 0.1 1.1 3.4 13.6 57.8 175 527 82 

the conductivity and the NMR-observed ex- 
change frequency increase by about two or- 
ders of magnitude (1 ). Because we do not 
know the coordination number in temm- 
rarily occupied vacancies and there are mul- 
tiple crystallographic sites for each LiO, 
polyhedron type, we cannot yet work out the 
detailed diffusion pathways in Li4SiO4. 
However, any future modeling of diffusion in 
this material should take into account its real 
energetic complexities. In particular, the 
close agreement of the Li03-to-Li04 activa- 
tion enerev with that for conductivitv allows 
the specuul'ation that this kind of juAp is a 
required step in conduction but that hops 
involving LiO,, less frequent at higher tem- 
peratures, may be actually rate-limiting. 

Because there is no face-sharing of Lion 
polyhedra in Li4Si04, there has been specu- 
lation that edge-shared Li polyhedra might 
provide the easiest diffusion pathway and 
might have the lowest activation energy for 

B 
Mixing time 

ms 
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Fig. 3. Slices parallel to the o, axis at the position 
of the LiO, diagonal peak in 2D exchange NMR 
spectra at (A) 33°C and (B) 59°C with different 
mixing times as indicated. 
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hopping between them (5). The shortest 
Li-Li distances (as small as 0.23 nm) among 
edge-shared LiO, polyhedra are between 
pairs with n = 4,6, n = 3,6, and n = 4,5. The 
2D NMR results (Table 1) show that the 
first two of these pairs do in fact have rela- 
tively low activation energies. For the last 
pair, the exchange rate could not be deter- 
mined by NMR because the peaks are 
strongly overlapping. For the n = 3,4 pair, 
the Li-Li distances average about 0.27 nm. 
It is thus not sumrisine that the activation 

L - 
energy for this exchange is the highest of 
those measbred. The n = 5.6 activation . . 
energy is alsd relatively low, which does not 
seem to correspond well to the relatively 
long Li-Li distance for this pair (>0.27 nm). 
This discre~ancv mav be due to a relativelv 
large error &introduced in the cross-peak in: 
tensity measurement because of low intensi- 
ties or to the inaccuracy of the Li+ positions 
as determined by x-ray diffraction data. [The 
possibility of disorder of Li occupancy among 
some sites with Li06 and LiO, polyhedra has 
been suggested (6 ) . ]  Other structural details 
also could have an important influence on 
the transition statetduring hopping and thus 
on the activation energy. Nonetheless, our 
2D NMR data document the correlation be- 
tween Li polyhedral linkage and the associ- 
ated probability of Lit hopping among them. 

In contrast to the results reported here, 
earlier NMR studies of ionic conductors have 
generally used low-resolution techniques and 
have relied on measurements of spin-lattice 
relaxation times (TI)  (2, 18, 19). These data 
can generally be collected over a much wider 
temperature range than can chemical ex- 
change spectra but are sensitive to cation 
motion on many distance scales, not just dif- 
fusive motion from site to site. For comparison 
with previous work, 7Li spin-lattice relaxation 
time (TI)  data were obtained for Li4Si04 to 
900°C (20) (Fig. 4). On a plot of ln(T1) 
versus inverse temperature, the strong asym- 
metry of the slopes below and above the TI 
minimum is typical for fast ion conductors. 
The slope near ambient temperature (-19 
kJ/mol) is much lower than that for conduc- 
tivity (72 to 82 kJ/mol), again as is commonly 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 
10001T (K) 

Fig. 4. Plot of In(T,) of 7Li versus inverse temper- 
ature for Li,SiO,. 
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observed. Although detailed interpretation of 
these data is complex and model-dependent, 
the general explanation for the low slope is 
that low-energy, local cation motion, which 
does not contribute to through-going diffu- 
sion and conductivity, is being sampled. 
These dvnamics could include low-freauencv 
vibratiois, hopping between local energy 
minima within an over-sized coordination 
polyhedron, or even unsuccessful attempts at 
jumping to a new site. 

Over limited temperature ranges and in 
samples that have clearly resolvable, multi- 
ple peaks in high-resolution NMR, direct 
measurements of site-exchange frequencies 
can make an im~ortant contribution to un- 
derstanding microscopic mechanisms of cat- 
ion diffusion. Two-dimensional exchange - 
spectroscopy can provide much greater detail 
and can samole much lower exchange rates " 

than can approximations based on ID data 
(1, 21). The ability to sample rates and 
energetics independently for different sites, 
or for at least different types of sites, and to 
link such results with structure has ereat " 
potential for the design and control of the 
transport properties of a variety of materials. 
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