
aligned (see electron micrograph). 
Crystals of nanocrystals are not new. In- 

deed, it has been known for some time that, 
under appropriate conditions, narrow size 
distributions of particles will self-assemble 
into ordered structures. What is new about 
this work is the level of control demon- 
strated, and the implications are many. 
For example, if the particles are in suffi- 
cient proximity that their electronic wave 
functions overlap, then the array will de- 
velop a unique electronic structure. In 
solid-state terminology, controlling this 
interaction. is analogous to manipulating 
the width ahd shape of the energy bands of 
the extended solid. Such control is rela- 
tively commonplace for one-dimensional 
superlattices but is unheard of for the 
three-dimensional case. 

The authors point out that their tech- 

niques should be applicable to nearly any 
particle system, provided that techniques 
for producing sufficiently narrow size distri- 
butions can be found. For the special case of 
metal nanocrvstals, recent work indicates , . 
that narrow size distributions may not even 
be necessarv (10). The disoersional attrac- , .  . 
tions between metal particles are relatively 
strong and scale geometrically with particle 
size. This leads directly to size-dependent 
phase separations followed by superlattice 
formation, all within a single step. 

The superlattice structures discussed in 
this issue represent only a first step toward 
putting quantum crystals into complex en- 
vironments. Many applications envisioned 
for quantum dots are device-oriented, sin- 
gle-particle tasks that have various wir- 
ing, geometry, and insulation requirements. 
The  development of techniques for the 

Ensemble Activity and Behavior: 
What's the Code? 

Sam A. Deadwyler and Robert E. Hampson 

T h e  brain processes enormous streams of 
temporally and spatially varying informa- 
tion within anatomically precise networks, 
by reading a poorly defined spatiotemporal 
code ( I ) .  Single-electrode recordings can 
determine both the firing rate of individual 
neurons and the correlation of this rate 
with sensory and behavioral events, but 
such perievent histograms reveal only small 
bits of the activity in the brain. This ap- 
proach to understanding the neural basis of 
cognition and behavior is like trying to de- 
cipher a video image one pixel at a time 
while the video image constantly changes: 
Only as one views many pixels does the im- 
age become apparent. For this reason, large- 
scale neuronal recordings are necessary to 
examine activity in ensembles of neurons 
(2) and to understand how the brain pro- 
cesses behaviorally relevant information. 

Much of our thinking about networks 
and ensembles in the mammalian brain has 
come from studies of single-electrode re- 
cordings of neurons obtained serially, in 
moderate to large numbers, within the same 
experimental context. The recordings are 
then combined and analyzed, post hoc (3). 
Such reconstructed ensembles reveal recur- 
ring temporal firing patterns associated with 
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specific sensory stimuli. This approach is 
analogous to restarting the video (one 
hopes at exactly the same place) over and 
over again and observing a different pixel 
each time, eventually reconstructing the 
video image after a sufficient number of ~ i x -  - 
els have been serially processed. Such stud- 
ies show that ensembles of 50 to 100 neu- 
rons can uniquely encode a finite number of 
input features (3). Because such analyses 
are by necessity reconstructed, they provide 
onlv indirect evidence that the neural ac- 
tiviiy driving behavior is distributed among 
coherent neurons (4). Nevertheless, most . . 
models of decision-making by neural net- 
works assume such a distribution (5). 

Although problematic, this approach 
has been productive. Georgopoulos (6) pro- 
vided the initial evidence that populations 
of neurons in the motor cortex of the mon- 
key encode information better than single 
neurons. In ensembles that code the direc- 
tion of limb movement, a derived intention 
vector predicted limb movements more 
accurately than individual neurons. Studies 
by Schultz et al. (7) showed temporally dis- 
tinct firing of different types of neurons in 
the monkey striatum during a task, such 
that the combined ensemble suggested 
that the triggering of one cell by another 
could temporally link the different phases 
of the task. 

Technical developments now allow di- 
rect recording of ensemble activity in be- 

parallel construction of such devices re- 
mains a major challenge. 
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having animals: These include (i) multi- 
electrode fabrication techniques (8), (ii) 
multichannel (10 or more) recording of ex- 
tracellular neural soike data in awake be- 
having animals (9), and (iii) appropriate 
statistical analysis (10). Although imple- 
mentation of this new technology is in its 
infancy, several new findings have emerged. 
Wilson and McNaughton (I  I )  recorded 
from 100 neurons in rats that were explor- 
ing a novel environment. They observed a 
tight correspondence between place-field 
firing and movement trajectories ( 6 ) ,  al- 
though the pattern of firing in these neu- 
rons could have reflected the animal's pres- 
ence in, rather than a movement toward, a 
particular location (1 2). 

It is essential to use appropriate statisti- 
cal analyses to identify what kind of infor- 
mation is actually encoded by ensembles 
during behavioral events (13). Nicolelis et 
al. (14), recording from large ensembles of 
neurons, demonstrated that interaction be- 
tween sensory receptive fields for whisker 
movement is widespread and is likely to in- 
volve most of the whisker-projection area of 
the cortex and thalamus. Using principal 
components and factor analysis of ensemble 
firing, they found that sensory receptive 
fields consisted of both temporally and spa- 
tially distributed firing patterns and that 
particular subsets of neurons functionally 
combined to orovide ~aral lel ,  distributed 
encoding of tactile stimuli within en- 
sembles. In additidn, they demonstrated a 
7- to 12-Hz rhythm initiated in the cortex 
that eventuallv svnchronized neurons in 
the thalamus and' trigeminal nucleus and 
modulated tactile encoding as a function of " 
exploratory movements. Thus, there is an 
association among sensory input, ensemble 
encoding, and processing of that informa- 
tion during behavior. " 

Correct computation and appropriate 
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interpretation of the informa- 
tion content within ensembles is 
critical to deciphering the na- 
ture of the ensemble code. Be- 
cause these calculations depend 
on both the information content 
and its distribution within the 
population (15), ensemble rep- 
resentations of behavioral or 
cognitive processes are likely to 
be at least as complex as the in- 
put patterns they must resolve 
(1 6). Moderate numbers (10) of 
hippocampal neurons (see fig- 
ure, upper left) were simultane- 
ously recorded from rats per- 
forming a two-lever version of a 
spatial delayed nonmatch to 
sample (DNMS) task (17). 
Task-relevant information was 
encoded in overlapping patches 
of distinct spatiotemporal firing 
within anatomically precise re- Ensemble codes. (Left) Example of an ensemble firing pattern for 10 hippocampal neurons. Left nonmatch re- 
gions of the hippocampus (see sponse of a DNMS trial displayed as a three-dimensional firing surface constructed from multiple perievent histo- 
figure, Ensemble Activity). The grams (250-ms time bins) recorded +1.5 s before and after execution of the behavioral response (R and white 
spatiotempora~ firing maps in stripe). The CAI (1-8) and CA3 (9-16) septotemporal recording sites, shown on the electrode array at the left, 

alternate along the electrode location axis (S and T) of the surface to preserve anatomic representation within the the hippocampus both ensemble. The color contour beneath the firing surface represents the two-dimensional spatiotemporal projection 
unique as as of the surface activity with firing rate represented by the indicated color bar (1 to 8 Hz). The two, three-dimen- 
patterns of activity related to the sional surface patterns at the bottom depict the same ensemble firing rate adjusted by the normalized variances 
execution of responses within a (range of k1 .O) extracted separately by the analysis for task phase (Nonmatch) and lever position (Left). (Right) 
DNMS trial. The contour surface has been demarcated by the representational features designated by the two extracted sur- 

~~f~~~~~~~ relevant to task face firing patterns (Nonmatch, Left) at lower left. The complementary features within the same dimensions 
(Sample, Right) are illustrated by the same contour but with a different color (blue). Spatial and temporal aspects was by of each dimension can overlap or interleave within neurons from the same ensemble as long as there remains a 

separate variance ex- spatiotemporal distribution unique to a particular behavioral response. An example of a different spatiotemporal 
tracted by population (multi- distribution of firing within the same ensemble is shown for a Right Sample response in which both of the above 
variate) analysis techniques (18) regions do not show distinct firing. [Data taken from (5).] 
from the overall ensemble firing 
pattern (see figure, lower two surfaces). feature of a task. The patterns appeared in- firsthand knowledge of ensemble firing pat- 
Contextual (see right side of figure, Sample stantaneously and completely at the time terns? Our findings (17), and those of 0th- 
versus Nonmatch phase) and operational of execution of the behavioral response ers (6, 11, 13, 14, 22), point to the superi- 
(Left versus Right lever presses) dimensions (see left side of figure, R and white stripe ority of ensemble recordings. The ensemble 
of the behavioral events in the DNMS trial on surfaces). code itself likely represents multiple dimen- 
were represented by precise patterns, which Hopfield (20), describing the virtues of sions of a single behavioral event (17). 
differed with respect to spatial distribution "temporally distinct patterns of action po- Hence, the full significance of the code 
within the hippocampus (see figure, Task tentials" from different neurons as a means cannot be extracted by examining the ac- 
versus Position contours). Features within a of encoding and decoding stimulus repre- tivity of single neurons whose instanta- 
dimension were encoded by complementary sentations, noted that for encoding new neous activity can only vary along one di- 
patterns (that is, reciprocal firing rates) in stimuli "the simplest scheme is to have a mension (changes in firing rate). With mul- 
the same set of spatially distinct neurons multiplicity of time delays" across the same tiple neuron recording, detection of the dy- 
(see figure, Sample versus Nonmatch, Left sets of neurons. Such a mechanism could namic properties of ensemble representa- 
versus Right contours). Different behav- provide the basis for short-term memory tions is possible. Indeed, co-existent spa- 
ioral events, even within the same trial (see (21). The figure illustrates this principle by tiotemporal patterns of activity with vari- 
figure, Right Sample), were associated with the separation of distinct spatiotemporal ance properties that reflect not only differ- 
different spatiotemporal firing across the patterns within the overall ensemble, ent behavioral components, but also the 
same ensemble of neurons. The ensemble which vary independently as a function of contexts in which those behaviors occur, 
patterns were present only during the ex- different behavioral dimensions. In studies have already been identified (see figure). 
ecution of task-relevant responses and not of sequences of cued (context-related) arm A Perspective in Science (23) suggested a 
during the delays (1 7). The functional sig- movements (22), appropriate ensemble fir- high degree of convergence of sensory infor- 
nificance of the encoded patterns was il- ing patterns in the motor cortex could be mation onto individual hippocampal neu- 
lustrated by analyses of behavioral errors; switched to the intended direction of move- rons. That concept can now be taken one 
87% of trials resulting in errors were associ- ment within milliseconds. The appropriate step further to explore representations 
ated with inappropriate ensemble codes. ensemble firing pattern was anticipated and within hippocampal ensembles. We may 
Encoding within hippocampal ensembles immediately selected from the overall set of have stumbled onto this representational 
was therefore expressed as conjunctions possible movement patterns when the cue scheme within hippocampal ensembles in 
(1 9) of discrete firing patterns, each associ- for a particular movement was presented. our systematic investigations with multiple 
ated with a separate dimension, category, or Is there anything to be gained by having neuron recording in well-defined behav- 

Ensemble Activity Left Nonmatch 

A .  
Left - Vonmatch 

Sample Nonm& Lefl Right 

Right Sample 

I Nonmatch Leit 
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ioral circumstances. Even so, the existence 
of such precise segregation of spatiotempo- 
ral firing along both contextual and behav- 
ioral dimensions makes it likely that this 
principle of information representation may 
be present in other brain regions. 
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Resistance to Radiation 

Michael J. Daly and Kenneth W. Minton 

A human exposed to less than 5 Gy (1 lethality or mutagenesis (2). 
Gy = 100 rad) of ionizing radiation How is this possible? It might be be- 
would suffer almost certain death. Mea- cause a chromosomal fragment can al- 
sured against this degree of radiation re- ways find an intact homologous neigh- 
sistance, the bacterium Deinococcus bor to serve as a repair template. In D. 
radiodurans is truly remarkable, capable radiodurans, chromosomes may exist in 
of surviving 5000 to 30,000 Gy of ioniz- pairs that are aligned relative to one an- 
ing radiation (1). Such a dose will shat- other by Holliday junctions (3). Thus, a 

radiation-induced chromosome double- 
strand break would not be lethal, be- 
cause an identical undamaged DNA du- 
plex is available nearby (see figure). 

Why does this extreme radiation re- 
sistance exist? Such high radiation fluxes 
have never occurred in the natural world, 
even in the early days of Earth's forma- 

Hypothetical double chromosome structure tion. B~~ another stress--dehydration- 
showing double-strand DNA breaks (at loci 
A-B and C-D) held in alignment by virtue of afflicts D. radiodurans and causes 

persistent Holliday junctions. massive DNA fragmentation in this 
nonsporulating organism. The radiation 

ter the organism's chromosomes into resistance of D. radiodurans may be a ser- 
hundreds of fragments, yet D. radiodurans endipitous result of its ability to repair its 
possesses an extraordinary ability. to re- DNA after severe dehydration (4). Thus, 
cover, owing to its supremely efficient the efficient repair system might be best 
DNA repair machinery. The cell's pow- thought of as a mechanism to heal DNA 
erful repair system can assemble intact fragmentation, whatever its cause. 
chromosomes from the hundreds of 
fragments remaining after a 10,000-Gy References 
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