
hui? sltes (1 1 ), n o  gruwt11 defect has been 
reported. T h e  results rex~eal a functional 
redunL?ancy of Ras and Rsrl in spite of their 
k n o ~ v n  individual roles. 

W h e n  the  ras1A ras2A rsr1A cyrl A 
(YEpT-TPK1, YCpLeGALl-RAS2-1) cells 
\yere shifted to a galactose-free medium at 
3d°C, they ceased to proliferate as large 
bucideil cells with chromosomal D S A  even- 
ly distrib~~teil  in Inother cells and buds (Fig. 
2, A to C ) ,  inJicating that the cells were 
arrested at or near the end of the M phase 
This arrest was accolnpanied hy an  accumu- 
lation of cells ~ v i t h  LISA content charac- 
teristic of the G1 and M phases (Fig. 2F) 
and by si~stained Cdc28 histone H 1  kinase 
activity (Fig. 2H) ,  consistent with a n  A 1  
phase arrest. Cells carrying an  intact RAS 
gene did not such cells (1C). accu~ ln~ la te  
This terminal phenotype was different from 
the G ,  arrest o f ~ a s 1 A  ras2A cells ~ v h e n  the  
cells were starved of exogenous CAMP. In  
this case, the  cells Lvere arrested as unhud- 
ded cells (Flg. 2D) n-ith a single nucleus 
(Fig. 2E), Cdc28 kinase activity decreased 
(Fig. 2G) ,  and cells with GI  LINA content 
acc~~llnilatecl(1L?). These results i~ndicate 
that the  cells x i t h  the RASl RAS2 RSRl 
trinle di5rut~tion are defective in the  corn- 
pletion of the  M phase. 

LX1e examinei? genetic interactions be-
tween RAS and other genes that participate 
in M pI1ase completion, inc~ucihg DBFZ, 
C:DCS (18,. CDC15 (19,. SP012,  an,? 
TEMI . kotl, C:DCS slid CDCI5 encode 
protein kinases. W e  introduced multicopy 
plasmids carrying each of these genes into 
the ras1A m s 2 l  rsrl l c y l  l (YEpT-TPK1, 
YCpLeGALl-RAS2-1) cells, and the result- 
ing transformants Lvere examined for gro~vth 
on a nalactoe-free ulate. Each of the ~lnllti- 
copy plaslnids suppressed the growth defects 
of the cells (Fig. 3A). None of these genes 
suppressed the CAMP requirement of the 
rasl A ras2 l  cells (1 0 ) .  Llammalian c-Ha- 
RAS, or its activated fornl (Val1'. Thr5"). 
also suppressei? the lethality, indicating that 
mammalian Ras can substitute for yeast Ras 
in this other function (Fig. 3B). 

W e  have shown here that S ,  cerevisiae 
Ras fi~nctions in the completion of the M 
phase. T h e  genetic interactions between 
RAS and other genes involved in A 1  phase 
c o ~ n ~ l e t i o nsuggest a net~vork of signal trans- 
duction patha-ays in which low molecular 
weight G T P  binding proteins an'? various 
protein ltinases are involved. Activation of 
Ras and ~Iownstream protein kinase cascade 
by gron-th factors in malnmalian cells is nec- 
essary for cell cycle progression through the 
G ,  phase to the S phase (2). Sex~eral reports 
contain arguments for another fi~nction of 
Ras in the G,-hl boundary in vertebrate cells 
(7, 20). Yeast and mammalian Ras proteins 
could share the same effector molecule in 
this signal transduction pathway. 
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Interferon y (IFN-y) responsiveness in certain cells depends on the state of cellular 
differentiation or activation. Here an in vitro developmental system was used to show that 
IFN-y produced during generation of the CD4+ T helper cell type 1 (T,1) subset extin- 
guishes expression of the IFN-y receptor P subunit, resulting in T,1 cells that are unre- 
sponsive to IFN-y. This P chain loss also occurred in IFN-y-treated TH2 cells and thus 
represents a specific response of CD4+ T cells to IFN-y rather than a TH1-specific 
differentiation event. These results define a mechanism of cellular desensitization where 
a cytokine down-regulates expression of a receptor subunit required primarily for sig- 
naling and not ligand binding. 

Recen t ly  it was reported that T H 1  and T H 2  
cells develop opposing patterns of respon- 
siveness to the  cytokines interleukin-12 
(IL-12) and IFN-y, with T1,lretaining only 
IL-12 responsiveness and T H 2  retaining 
only IFN-y responsiveness (1 ). fiecause this 
differential responsiveness significantly afl 
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fects T H 1  ani? TH2 subset stability in vivo, 
the  developmental lnechanisln controlling 
the  loss of cytokine receptor signaling be- 
colnes central to the understanding of 
pathogen susceptibility or resistance (1 ,  2 ) .  
Using fully differentiated long-term T cell 
clones, Pernis et al. observecl that expression 
of the  IFN-y receptor P chain, the  receptor 
x ~ b u n ~ trecli~ired prilnarily for signaling and 
not ligani? binding, is limited to T1,2 cells, 
and it was implied that this was llnportant 
to phenotype differentiation (3, 4). T o  
characterize the mechanism controlling de- 
velopmental expression of the t ~ v o  IFN-y 
receptor subunitb and to cr~tically test their 



roles in directing T cell differentiation, we 
used an ap T cell receptor (TCR) trans-
genic system. This allowed us to examine 
and manipulate the expression of the two 
IFN-y receptor subunits during differentia-
tion of nayve T cells. Our results show that 
IFN-y receptor P chain loss is not intrinsic 
to TH1 development but rather represents 
an unusual mechanism of ligand-dependent 
cellular desensitization. 

Naive splenic CD4+ T cells from 
DO11.10 TCR transgenic mice were differ-
entiated in vitro into TH1or TH2subsets, 
exposed to IFN-y,and then analyzed for 
major histocompatibility complex (MHC) 
class I expression (Fig. 1A) (5, 6). Treat-
ment with IFN-y did not enhance MHC 
class I expression on TH1 cells but up-
regulated expression on TH2 cells. In con-
trast, both cell types responded to IFN-a, 
indicating that the class I response pathway 
was intact. IFN-y also selectively activated 
the Jak-STAT (Janus kinase-signal trans-
ducers and activators of transcription)~ a t h -

way only in early developing TH2cells and 
not in TH1 cells, although both cell types 
expressed comparable amounts of the Jak-
STAT proteins required for IFN-ysignaling 
(7, 8). As was shown for long-term TH 
clones,early developing TH1cells expressed 
substantially reduced amounts of IFN-y re-
ceptor p chain message compared with TH2 
cells (Fig. 1B) (3). This observation was 
substantiated by protein immunoblot anal-
ysis in which a hamster monoclonal anti-
body (mAb) (MOB-47) was used that was 
specific for the murine IFN-y receptor P 
chain (9). Whereas TH2cells contained P 
chain protein, TH1cells did not (Fig. 1C). 
Both subsets expressed comparable amounts 
of IFN-y receptor a chain as detected with 
a mAb (GR-20) specific for the IFN-y re-
ceptor a chain (Fig. 1C) (10).These exper-
iments confirm the previous observations of 
Pemis et al. (3) and demonstrate that the 
receptor p chain protein as well as message 
is extinguished in TH1 cells as early as 14 
days after differentiation. 

Fig. 1. Lack of IFN-y receptor p chain expression A 
in early developing TH1cells. TH1and TH2cdls 
were differentiated for 14days as described (13). 
(A)Cells were treated for 72 hours with medium n 

(dottednationalline),referencemurineunitsIFN-y(IRU)(MulFN-y)per milliliter,[I000inter-thick -zl:h-$ 60 [hzi 30solid line],or MulFN-a (1000 IRU/ml,thin solid line) o ,.i , 1. 

and analyzed by fluorescence-activatedcell sort- o !  .~L,. . . 

ing (FACS)for MHC class I expression with a bi- 100 10' lo2 lo3 100 101 102 103 lo4 

otinylated H-2d-~pecifi~antibody (Pharmingen, Fluorescence intensity 
San Diego, California) as described (11). (B) B C 
Northem (RNA) blot analysis of total RNA from B chain- a chain -l @ @
THl, TH2,or L929 cells was performed with 32P- - -labeled murine p chain complementary DNA ~ ~ ~ i ~ - ,--
(cDNA)(4)as described (11).(C)TH1cells (6.7 X *mf3chain+' -im 
10') orTH2cells(9x 103were lysed asdescribed TH1 TH2 ~ 9 2 9  

TH1 TH2L929 
(1t),and receptor subunitswere immunoprecipi-
tated with either 1 J L ~of GR-20(10)or 0.5 pg of MOB-47 (9),mAbs speciticfor the MulFN-y receptora 
and p chains,respectively.Precipitateswere separatedon 7or 9%SDS-polyacrylamidegelsfor analysis 
of a or p chains, respectively. Protein immunoblot analysis was performed with MulFN-y receptor a 
chain-specific mAbs (1G5,1F1, and 2E2)(9)or biotinylated MOB-47 (9)as described (14). 

Day 0 (naTve)
1507 1 

Day 14 

anti- go OVA90 

IL-4 60 
anti-
IL-12 30 .

0 
lo0 lo1 lo2 lo3 lo4 100 lo1 lo2 I@ lo4 

Fluorescence intensity (IFN-y receptor a chaln) 

Fig. 2. Loss of IFN-y receptor p chain during TH1development.Naiw CD4+ 
Tcells or TH1and TH2cells treated wlth dilute acetic acid as described (11) 
were analyzed by FACS for the presence of IFN-y receptor a and p chains 
after7or 14daysof differentiation(13).(A)Cdlswere left untreated (solid line) 
or were treated with 10 pg of MuIFN-y for 45 min (dotted line),and then 

Day 0 (naTve) 
30 

To define the mechanism underlying this 
process, we monitored surface expression of 
the two IFN-yreceptor subunitson CD4+T 
cells during the process of THsubset differ-
entiation. Because the receptor epitopes rec-
ognized by the mAbs GR-20 and MOB-47 
are masked by bound IFN-y,cells were treat-
ed with dilute acid to remove bound ligand 
before they were stained (11). Naive CD4+ 

Fluorescenceintensity 

Fig. 3. Maintenanceof the IFN-y receptor p chain 
on TH1cellsderived from mice deficientfor IFN-y 
receptor a chain. IFN-runresponsive mice ex-
pressing the DO11.10 TCR transgene were gen-
erated by breeding the transgenic TCR (5)into 
mice canying a null mutation for the IFN-y recep-
tor a chain (IFN-yRO/O)(12).TH1and TH2cells 
were differentiated as described (13).Fourteen-
day-diifferentiated TH1 and TH2 cells from 
DO11.lo-IFN-yRom(C,D,G, and H)or DO11.10 
control (A, B, E, and F) mice were analyzed as 
described in Fig. 2 for expression of the IFN-y 
receptor p chain [(A) to (D)] or a chain [(E)to (H)]. 

Day I 4  

anti- 30 
IL-12 

1 0 ~ 1 0 ~ 1 0 ~ 1 0 ~ 1 0 ~1 0 ° 1 0 1 1 ~ 2 1 ~ 3 1 0 4  
Fluorescence intenslty (IFN9 receptor P chain) 

stained with 1 pg of biotinyhted GR-20 and streptavidin-phycoetythrin (PE) 
(11).(B)Cells were stained with 0.3 p,g of MOB-47 (solid line)or 0.3 pg of 
species-matchedcontrol mAb (dottedline)and developed with 1 pg of bio-
tinylated polyclonal goat antibody to hamster immunoglobulin and streptavi-
din-PE.OVA, ovalbumin. 
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T cells and acid-stripped TH1 and TH2 cells 
expressed similar amounts of the IFN-y re- 
ceptor a chain (Fig. 2A). In contrast, where- 
as nalve CD4+ T cells and early developing 
TH2 cells expressed IFN-y receptor P chain, 
TH1 cells did not (Fig. 2B). Loss of the 
receptor p chain on TH1 cells occurred with- 
in 5 days after the initiation of primary cul- 
ture (8). Thus, CD4+ T cells lose cell surface 
expression of the IFN-y receptor P chain as 
they differentiate to the TH1 subset. 

These observations suggested that the 
loss of the IFN-y receptor P chain on TH1 
cells was either a process intrinsic to TH1 
differentiation or a consequence of it. We 
distinguished between these possibilities by 
breeding the DO1l.10 TCR into IFN-y- 
unresponsive mice lacking the IFN-y recep- 
tor a chain (12). T cells from these mice 
differentiated normally into TH1 and TH2 
subsets, as evidenced by polarized produc- 
tion of subset-specific cytokines (8). How- 
ever, unlike TH1 cells derived from IFN-y- 
responsive transgenic mice, p chain expres- 
sion was retained on TH1 cells derived from 
TCR transgenic mice lacking the IFN-y 
receptor a chain (Fig. 3C). These results 
demonstrate that loss of the IFN-y receptor 
p chain requires the presence of a function- 
ally active IFN-y receptor and represents a 
response of the cells to ligand. Moreover, 
the results show that the process is not 
intrinsically linked to TH1 differentiation. 

To  directly test whether the loss of the 

IFN-y receptor P chain represented a gen- 
eral biologic response of CD4+ T cells to 
IFN-y, TH2 cells were treated with three 
different doses of IFN-y (100, 500, or 2000 
international reference units per milliliter), 
quantities typically produced by TH1 cul- 
tures, and analyzed for surface expression of 
the receptor p chain (Fig. 4) (8). A t  all 
doses tested, IFN-y induced a loss of recep- 
tor p chain expression on TH2 cells (Fig. 
4A) (8). The kinetics of receptor P chain 
loss on IFN-y-treated TH2 cells was similar 
to that displayed on TH1 cells (8). In con- 
trast, IFN-y did not down-regulate expres- 
sion of the p chain on L929 fibroblasts and 
actually increased expression in some ex- 
periments (Fig. 4D). Protein immunoblot 
analysis demonstrated that all T cells ex- 
pressed the IFN-y receptor a chain and 
untreated TH2 cells expressed the receptor 
p chain (Fig. 4B). In contrast, no P chain 
was detected in either TH1 or IFN-y-treat- 
ed TH2 cells. Analysis of cytokine produc- 
tion by the T cell cultures showed that 
IFN-y treatment of TH2 cells did not alter 
the TH2 phenotype (8). IF ' -y  did not en- 
hance MHC class I expression on TH2 cells 
pretreated with IFN-y (Fig. 4C). In con- 
trast, these cells remained fully responsive 
to IFN-a. Thus, IFN-y-treated TH2 cells 
become unresponsive to IFN-y in a manner 
similar to that of TH1 cells. 

With a TCR transgenic system, we have 
been able to distinguish between cellular re- 

B chain a chain 
A 120 

C 
100 , IFN-y Tx TH2 T ~ 2  

100 10' lo2 lo3 100 10' loZ lo3 100 lo1 102 103 
Fluorescence intensity (MHC class I H-zd) 

l @  10' 102 lo3 100 10' 102 103 

Fluorescence intensity 

B 
a cham- ol) Ly r .d 

B cham - Y l  

T I  T.2 l @  10' lo2 la3 loP 10' lo2 103 
p chain a chain 
fluorescence Intensity 

Fig. 4. Loss of IFN-y receptor P chain expression and IFN-y responsiveness in IFN-y-treated TH2 cells. 
TH2 cells were treated with MulFN-y (2000 IRU/ml) on days 0 to 5 of both primary and secondary 
stimulation (IFN--y Tx TH2) (13). TH1, T,2, and IFN-y Tx TH2 cells were differentiated for 14 days as 
described (13). (A) FACS analysis for expression of IFN-y receptor a and P chains on TH2 and IFN--y Tx 
TH2 was performed as described in Fig. 2. (B) Protein immunoblot analysis for IFN-y receptor a and P 
chains from 6.7 x 1 O7 TH1, 9 x lo7 TH2, and 9 X lo7 IFN--y Tx TH2 cells was performed as described 
in Fig. 1. (C) MHC class I expression on TH1, IFN-y Tx TH2, and TH2 cells after treatment with medium 
(dotted line), MulFN-y (thick solid line), or MulFN-a (thin solid line) was assessed by FAGS as described 
in Fig. 1. (D) L929 fibroblasts were treated with MulFN-y (1000 IRU/ml) and analyzed by FACS 72 hours 
later for expression of the IFN-y receptor polypeptides as described in Fig. 2 with mAbs 1 G5 and MOB-55 
to stain IFN-y receptor a and P chains, respectively (9). 
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sponses intrinsic to TH subset differentiation 
and those that arise as a result of this process. 
Whereas our observations confirm and extend 
those of Pemis et al. (3), our s t d y  draw: 
different conclusions about the mechanism of 
this process. Specifically, we show that the 
TH1 subset develops normally from IFN-y- 
unresponsive nalve T cells and maintains ex- 
pression of the IFN-y receptor P chain. This 
result demonstrates that IFN-y receptor P 
chain loss is not intrinsic to the TH differen- 
tiation process. We also show that p chain 
loss and inactivation of IFN-y signaling oc- 
curs in TH2 cells when they are exposed to 
IFN-y. Thus, the loss of IFN-y receptor P 
chain expression on T cells is a consequence 
of exposure to IFN-y rather than a true mark- 
er of phenotype. Our observations indicate 
that inactivation of IFN-y signaling in CD4+ 
T cells is a dynamic regulatory process that 
represents a cellular response to cytokines 
present in the local environment. 

Equally significant is our observation 
that on T cells, IFN-y down-regulates ex- 
pression of a component of its own receptor 
involved predominantly-in signaling rather 
than ligand binding (4). Previous work with 
several cell tvnes has demonstrated that 

1 .  

after receptor ligation, the IFN-y receptor a 
chain is internalized and. on most cells. 
dissociates from ligand and recycles back to 
the cell surface (7). However, on a limited 
number of cell types, IFN-y induces down- 
regulation of the receptor a chain by affect- 
ing receptor a chain internalization (7). 
Internalization of a ligand-binding receptor 
subunit is a common mechanism that leads 
to a transient insensitivity of cells to a 
variety of hormone and cytokine ligands. 
However, our obsewation that ligand in- 
duces the down-regulation of biosynthesis 
of a signaling component of a receptor 
without affecting expression of the ligand- 
binding chain represents a heretofore un- 
recognized mechanism of ligand-induced 
cellular desensitization. That B chain 
down-regulation occurs on T cells but not 
on certain other cells suggests that this 
process can modulate the ability of specific 
cells to respond to subsequent reexposure to 
ligand. In this manner, IFN-y-induced cel- 
lular responses may be differentially regulat- 
ed in distinct cell types. It will be important 
in the future to explore which cells are 
desensitized to IFN-r in this manner and to 
determine whether down-regulation of a re- 
ceptor signaling chain represents a para- 
digm controlling the activity of other cyto- 
kine receptors as well. 
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and platelets. It is not clear \vhcrher thi, 
di;lgnois ot hemolytic ,lnelnla \vas mainly 
17aseil o n  a positive i l~rect Cc~cimlis t a t .  
Many healthy m,~caque\ will re'lct pos~tivelv 
if human Cooml~s  test reagents are used (6) .  
C l~n ica l  I~emolvtic ;1nemi:1 lmlst he con-
tir~neil l ~ y  a i l i l~ t~onal  as he- evidence, s ~ ~ c h  
~noglol~inuria,  the presence o t  po~k~locytosi\ ,  
\pherocvte,  11enic)lvtic or ~cter ic  p l ; ~ s ~ i i , ~ ,,111~1 

increa\eJ serum h ~ l i r ~ ~ l ~ i n  ,lnJ lactate cieh\-- 
ilrogen,jse. T h e  erythro~il h)-perplasia o t  rlie 
hone marrow, repi~rreil hv Raha et ctl., is a 
t~nciing that \ve ilo not see in ane~n ic  SIV- 
intecreil anim;lls; rather, their hone m,lrron. 
aspirate\ reveal a myeloiil liyperplas~a \ v ~ t h  
the er)-throiil series heing nor~nal  or only 
sliglirly increaseil (7) . FinJing\ in , lJi l i t~on 
to an  ahunilance of ~negakaryocytes in the  
hone lnarro\v are needed ti] \utiL\orr the 

L .  


h)-pothesi  cit peripheral platelet i l e s t r~~c-
tion. SIV-intecteil aninials otten have a 
1negakar)-oc)-te h\-perplaia (it the  lione mar- 
row, hut rhe\e megak,~ryocvtes liave 111-
cre;~\eil cytoplasmic vacuol~ration, which 
suggests rhat the  t l i r o ~ i i l ~ o c ~ t i ~ p e ~ ~ i ~ i  is ,L re- 
sult o t  ilecreaseil platelet proilucrion rather 
than peripheral platelet i lerruction (5) .  

Exrr ;~care neecis to l ~ e  taken to excluite 
all other pathogens that can ailverselv attecr 
the  i ~ n m u n e  s v r e m  ,lnJ the health o t  11121- 
caque\. Altliougli the ,~nimals  111 tlie stui1)- 
liv R ;~ha  et al. \\ere pol\-~nerase c h i n  re'lc- 

A , 


t1<111-llegiltive (13y ilI1 ;1ss,1v ,111Ie to i1etect 
a p p ~ ) x i m ; ~ t e l yone intecteci cell in XL?i?L? 
PRMC) anil seronegarlve tor simian type 13 
rerrciviruse, v l r u  i\olation I \  more re11,ll~le 
ti)r i1ir~vnos~s \v,rso t  this viral infecticin. 13~1t 
not reported l ~ v  Raha et ctl. 

Until  ,I Inore thc>rouvh ,~n,llysis is corn- 
pleteil anil r e s ~ ~ l t s  ctl. are con-ot Rah,~ i't 
tirnieil, it wo~1li1 he L\reni:1ture to itisniiss the 

111their recent report, Timothy W. R a h , ~et 
ctl. \tate that a cleletion mutant o t  \ilnian 
i ~ i i ~ n ~ ~ n o i l e t ~ c i e ~ ~ c vviru\ (S IV13) ,  lvhich 
iloes n i ~ t  cauw illstrase in adult macaques 
;111ci I l i l  17ee11 b ~ l e ~ e s ~ t ~ l l l )  11sei1 i l  :1 vi1CCIlle 
against challenge \v~t l i  p ; ~ t h o g e n ~ cvirus ( 1  ), 
causes cjcilu~reil ilnm~111ijileticie1icv syn- 
Jrolne ( A I L S )  in ne\vliorn macailue.  They 
ascrihe rlie Jitterential outcome o t  S lVL3  
in t ec t~ono t  neonatal anid ailult mac:lilues to 
several pc~ss~hi l i t~es  o tincluciing the  a ~ n o u n r  

repl~cation early atter inoculation, the  
route (it vlrus i n o c ~ ~ l ~ ~ r ~ i i n ,  ;111i1 the cievelop- 
ing neonatal immune s)-stem. Ho\vever, 
their \ruciv i l o e  not allo\v separation o t  
these important var~ahles.  

Lyle Liunil that 111gIi-close in t r , jveno~~s 
i n i ~ c ~ ~ l ; ~ t ~ o nne~v17orn rlie\us macailuesof 
1 ~ 1 t hmolecularlv cloneil SIVlnac239 ( the  
p ;~ ren t ;~ l  SIVL3 wa\ iie-virus fro111 ~ v h ~ c h  
rived) resulteil 111 persistently high amo~lnrs  
of viru\ in Cer~pheral  hlooil 1iionanucle:1r 
cell\ (PBMC)  anil plasma (higher than  
those reported hy Raha et al. h r  S I V 1 3 ) .  
Rhesus ne\vhcirn\ intecteil \vith SIVlnacl39 
Jii1 not experience rapiil C D 4 +  T lvmpho-
cyte ilepletion, anil tlie tlme course lxfore 
taral 1mmunoi1etic~e11~~- ilevelopeil \vas ccjn- 
\istent \vith rhat previouslv reporteJ for 
SIVmacl39-intecteci aci~llt Inacailues ( that  
I.;, 6 to 24 ~ n o n t h s )  ( 2 ,  3 ) .  Thu \ ,  an  age- 
relareil J ~ t t e ~ e n c e  Joes not explain \vhv rhe- 
\LI \  i n tC~n t s  with a t t e n ~ ~ , l t e Jincjc~~l~j te i l  an  
tr~ple-ileletion ~ i i ~ ~ t a n t  SIVniac239 aLi- ot 
pear to  experience a more rapici CL)4+ T 
cell ilepletion anil CL)4+/CL)8+ T cell ratio 
i n v e r ~ o n  th;rn rhesus inf,~nrs inoculateil 
\vith the parhiigenic parental virus, SIV- 
1ii,lcl39. W e  also fo~ lnd  that ahsolure CLJ4- 
T lylnphc~cyre nu~iilier\ were not a reliahle 
marker ot i l~ \ea\e  prclgresslon in infant rhe- 
SLIS macaques lxca~ l se  o t  extreme v,~rialiilitv 
o t  alisi j l~~te lvmpIiocyte counts in response 
to stress (for exalnple, hanilling). Clnly ,ih- 

solute C L 3 4  T cell numherb tl1;lt are per- 
sistent1)- helo~v 5@L? per m ~ c r o l ~ t e r  reliahly 
sugge\reil CLJ4+ T lylnplx)cyte ilepletion in 
neonat:11 macaques (2-4). 

Baha et ctl. liypc)rliesi-.e tIi,jt the  oral 
route o t  ~nocu la t ion  ma)- he responsil~le t i ~ r  
~ncreaseil  virulence o t  S I V 1 3  in n e n -
horns. Cl~lr oh\erv:1tiom with t ~ v e  orally 
anti six i n t r , ~ v e n o ~ ~ s l y  inoculareci ne\vl7orn 
m a c a q u e  did no t  Jemonstra te  a luore se- 
vere course of intection w ~ t h  ~111clonei1 
pathogenic SIV1nac25 I tor rlie oral route 
(2-4) .  W i t h  rex;lrci t o  the  postulateil age- 
Jepenilence of SIV v i r ~ ~ l e n c e ,we li,rve 
also co~nparei l  t he  tinle course o t  ~ n t e c t ~ o n  
of rlie nonp; l thogen~c molecular clone, 
SIVmacl  A 11, anil S I V / ~ L I I ~ ~ I I  immune-
i1eticienc)- virus-I (HIV- I ) envelope chi- 
merlc v i r ~ ~ s e sin macailLles o t  ciitterent 
ages: W e  have n o  evicience tli,lt 311 SIV 
srr;lin t l i ;~ t  i\ ; ~ t t e n u a t e ~ l  in older mac i lq~~es  
lxcomes pathogenic \vhen i n o c ~ ~ l ; l t e J  In-
tr,jvenou\ly or or,llly ~ n t o  ne\vhorn m;l-
caques ( 2 .  5 ) .  Inste,lci, inoculation o t  tetal 
anti ne\vl~orn lrlacailues \vith atrenu:lreJ 
SIV~l lac1A I I proveJ to he a sate anti etfec-
rive vaccine ag:linst ch,illenge with patho- 
genic uncloneil SIVln,lc later in lit? (3). 
Finallv, C I L I ~.;ruilies ~nilic,ite that the  neo-
natal immune s)-stem \vas not over\vheImeil 
17)- attenuateil SIV isol,lre or hy ,I patho-
genic SIV clone ( 2 ,  3 ) .  

C a u t ~ o n  m ~ ~ s r  when ;issigning he L I S ~ J  
the  unilerlving cause of ileath in SIV-
intecreci m,lcaques to i m ~ n u n o ~ l e t ~ c i e n c ) . potential o t  SIV nej-Jeletion 111~1t;ints;IS 

For tlie one  SIV13-inoculateil  mac;lilLle l i v e - a t t e n ~ i t  v;lcclnes. 
tha t  ilieil in t h e ~ r  s t ~ ~ i l y ,  Koen K.  A. V a n  Rompay t he  cla\sic,ll Ii:111- 
marks o t  simian AILJS (such :IS the  pres- Abbie Spinner 
ence of c~pporrunisr~c  in tecr~ons ,  encep11- Moses Otsyula 
al~i~iar l iy ,  , ~ ~ ~ , l r e n t l \ - Michuel B. McChesneyanil so 0 1 1 )  were not  
Jemcinstrateil h\- Ralx  et ctl. Insre,iil, this Marta L. Marthus 
ani~r la lh ~ i lsevere anemia ;1ni1 thro~nhocy-  C:ulijornict Re,$onctl Priinute Reseurch C:i'nti'r. 
ropenia, reporteil1)- a r e s ~ ~ l r  L'niversitr o j  Citlijoriiiit, ot  peripheral 
a u t o ~ ~ n m ~ ~ n ei lesr r~~cr ionot reci 13looJ cells Dnvis. C:A 9551 6-8542. L'SA 


