leaf indicates that at least some of the xy-
lem elements are capable of sustaining pres-
sures below —1.5 MPa. This contradicts
measurements made with the xylem pres-
sure probe in which cavitation generally
occurred at much higher pressures (>-0.4
MPa) (9, 11, 12). It is also at odds with
predictions of the stability of water in the
xylem based on measurements of cavitation
thresholds in artificially constructed water
columns subjected to centrifugal force (14).
In the latter study, the mean cavitation
threshold for distilled water in a glass tube
was —0.26 MPa; stability below —1.0 MPa
only occurred when stringent standards
governing the purity of the water and clean-
liness of all surfaces were observed. On the
basis of these experimental results, Smith
(14) concluded that xylem pressures more
negative than —1 MPa are highly improba-
ble. An alternative explanation consistent
with the data presented here is that glass
tubes are an inappropriate model system for
assessing the stability of water under ten-
sion in the xylem.

The implications for water transport
mechanisms proposed on the basis of xylem
pressure probe measurements versus the bal-
ancing pressure method are profound (15).
The balancing pressure technique indicates
that hydrostatic gradients in the xylem are
adequate to explain observed rates of water
movement. The much smaller tensions
measured by the xylem pressure probe re-
quire the existence of an additional, un-
known mechanism for water transport in
plants. Agreement between the balancing
pressure and experimentally generated ten-
sion in the xylem provides empirical vali-
dation of the ability of the balancing pres-
sure technique to measure negative xylem
pressures, supporting the cohesion theory as
the primary mechanism for water transport
in higher plants.
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Inhibitors of HIV Nucleocapsid Protein Zinc
Fingers as Candidates for the Treatment of AIDS

William G. Rice,” Jeffrey G. Supko, Louis Malspeis,
Robert W. Buckheit Jr., David Clanton, Ming Bu, Lisa Graham,
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Strategies for the treatment of human immunodeficiency virus-type 1 (HIV-1) infection
must contend with the obstacle of drug resistance. HIV-1 nucleocapsid protein zinc
fingers are prime antiviral targets because they are mutationally intolerant and are required
both for acute infection and virion assembly. Nontoxic disulfide-substituted benzamides
were identified that attack the zinc fingers, inactivate cell-free virions, inhibit acute and
chronic infections, and exhibit broad antiretroviral activity. The compounds were highly
synergistic with other antiviral agents, and resistant mutants have not been detected. Zinc
finger-reactive compounds may offer an anti-HIV strategy that restricts drug-resistance

development.

Successful therapeutic management of
HIV-1 infection and the associated acquired
immunodeficiency syndrome (AIDS) may
be achieved by antiviral strategies targeted to
retroviral features that are highly conserved
and thus mutationally intolerant. Sequence
analysis of retroviral components has re-
vealed a highly conserved structural motif,
termed the retroviral-type zinc finger, that is
arranged in a peptide segment Cys-X,-Cys-
X4-His-X,-Cys (CCHG; X, any amino acid)
and coordinated to zinc (1, 2). The chelating
residues (3 Cys, 1 His) and the spacing of the
zinc finger array are absolutely conserved
among all known lentiretroviruses and on-
cornoretroviruses, and mutations in the zinc-
chelating residues result in noninfectious vi-
rus (3). Two such CCHC-type zinc fingers
are contained within the HIV-1 p7 nucleo-
capsid (p7NC) protein, a maturational prod-
uct of the Pr55%* and Pr160%* ! precursor
polyproteins. Within the precursor polypro-
teins the fingers function in packaging of
viral genomic RNA into progeny virions,
whereas the same zinc fingers of the pro-
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cessed p7NC function in an early phase of
retroviral infection (3, 4).

The nucleophilic CCHC zinc finger do-
nates electrons to the C-nitroso group of
3-nitrosobenzamide and certain other elec-
trophilic groups (5), resulting in modifica-
tion of the zinc-coordinating cysteine thio-
lates, ejection of zinc from the array, and
inactivation of HIV-1 infectivity. Hence,
electrophilic  disulfide-substituted  benz-
amides (DIBAs) discovered as active
against HIV-1 by the National Cancer In-
stitute’s drug screening program were iden-
tified as potential zinc finger—reactive com-
pounds. Molecular structures of five of the
DIBA-type compounds are shown in Fig. 1.
DIBA-1 and DIBA-2 are closely related
congeners differing by only a single acetyl
group, and DIBA-3 is a low molecular
weight derivative of DIBA-1. DIBA-4 is a
congener of DIBA-1 in which the p-amino-
phenyl sulfonamide moiety has been re-
placed with a DL-isoleucine residue, and
DIBA-5 is a para-para positional isomer of
DIBA-1 in which the spatial relation be-



tween the disulfide and the benzamide has
been modified.

As shown in Table 1, DIBA-1 was active
against HIV-1,p in the initial CEM-SS cell-
based screen with a median effective con-
centration (ECg) of 2.3 uM; no cellular
toxicity was observed at 200 pM. DIBA-2
(ECso = 1.5 uM), DIBA-3 (EC,, = 0.4
uM), and DIBA-4 (ECsy = 1.9 pM) ex-
hibited antiviral activity essentially equiva-
lent to that of DIBA-1, and DIBA-5 was
not active. DIBA-1, -2, -3, and -4 inhibited
all other strains of HIV-1 tested (Table 1),
including those selected for resistance to
3'-azido-2',3’-dideoxythymidine [AZT, nu-
cleoside inhibitor of reverse transcriptase
(RT)], pyridinone, or nevirapine [non-
nucleoside RT inhibitors (NNRTIs)]. The
compounds also inhibited infection by a
panel of clinical isolates of HIV-1 in human
peripheral blood lymphocyte (PBL) cul-
tures, monocytotropic strains of HIV-1 in
monocyte-macrophage (Mono/Md)  cul-
tures, and by HIV-2 and simian immunode-
ficiency virus (SIV). The combination of
DIBA-1 and AZT resulted in an enhanced
cytoprotective effect of ~70% (6), as com-
pared with the synergistic actions of AZT
with NNRTIs that typically demonstrate
enhanced antiviral effects in the range of 10
to 50% (7). Synergy was observed with each
of the active DIBA compounds in combi-
nation with AZT, 2',3'-dideoxycytidine
(DDC), various NNRTIs, or the KNI-272
protease inhibitor (8).

Addition of DIBA compounds to cul-
tures of chronically infected HO/HIV-14,
cells resulted in concentration-dependent
reductions in the production of virion-asso-
ciated RT activity, p24, and infectious virus
(Fig. 2A). Likewise, addition of DIBA-1 to
cultures of latently infected Ul or ACH2
cells before stimulation with tumor necrosis

factor—a (TNF-a), interleukin-6 (IL-6), or
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phorbol 12-myristate 13-acetate (PMA)
also resulted in inhibition of late phase
virion production (note the decreased
amounts of supernatant RT in Fig. 2, B and

| REPORTS |

C). Addition of various concentrations of
DIBA-1 to cultures of 5 X 10* U1 cells that
had been prestimulated with TNF-a (5 ng/
ml) for 24 hours also resulted in a dose-
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Fig. 1 (left). Molecular structures of the disulfide-substituted benzamide (DIBA) compounds.

Fig. 2 (right). Effects of DIBA-1 on the late phase of the HIV-1
HO/HIV-1gy cells (17) were cultured in the presence of DIBA-1,

infectious cycle. (A) Chronically infected
and cell-free supernatants were analyzed

for virus content by RT assay and p24 levels. Infectious titers in the supernatant were quantitated by the

HelLa/CD4/HIV-1 LTR/B-Gal system as described (7). Latently

infected U1 cells (B) and ACH2 cells (C)

(22) were pretreated with 20 uM DIBA-1 for 1 hour before the addition of TNF-« (100 U/ml), IL-6 (100
U/ml), or 10 nM PMA, and after 72 hours the culture supernatants were analyzed for virus content by RT

assay.

Table 1. Range of antiviral action of DIBAs. Anti-HIV studies with lymphocyte-derived cell lines were done
with the XT T cytopathicity assay (27). Data are presented as the percent control of XTT values for the
uninfected, drug-free control. EC4, values reflect the drug concentration that provides 50% protection
from the cytopathic effect of the virus. Antiviral assays with fresh human PBLs and Mono/Md cultures
were done as described (5, 17); ECgq values for these cultures indicate the drug concentration that
provided a 50% reduction in viral p24 production. SI and NSI, syncytia-inducing and nonsyncytia-
inducing strains of HIV-1, respectively. AZTR, Pyr?, and Nev™ indicate strains of HIV-1 that are resistant

to AZT, pyridinone, or nevirapine, respectively.

EC50 (kM)
Cell type Virus strain
DIBA-1 DIBA-2 DIBA-3 DIBA-4
CEM-SS HIV-1¢ 2.3 1.5 0.4 1.9
CEM-SS HIV-1,, 2.8 5.2 0.4 1.6
Drug-resistant
MT-4 HIV-11(AZTR) 1.9 1.9 1.6 0.3
MT-4 HIV-1 4,5 (Pyrf) 0.6 8.9 2.4 5.1
CEM-SS HIV-1,; 19(NevF) 2.2 4.6 2.3 3.5
Clinical isolates
PBL HIV-1e,0 (S 3.5 5.2 7.5 0.4
HIV-15, (S 0.3 7.5 1.8 7.1
HIV-1,,,, (NSI) 3.6 9.9 5.2 9.3
HIV-1vome (S 4.0 8.2 5.7 4.3
Other
Mono/Md HIV-1 04 5.8 9.4 17.5 35.0
CEM-SS HIV-2.0p 1.6 3.0 1.0 2.6
CEM-SS SIvV 14.6 3.4 2.1 2.7
SCIENCE ¢ VOL. 270 < 17 NOVEMBER 1995 1195



dependent decrease in virion-associated
p24 production, and a 50% decrease was
observed with 5.7 uM DIBA-1. DIBA-2, -3,
and -4 were similarly active, whereas
DIBA-5 was inactive, and evaluation of
AZT and dextran sulfate revealed no inhib-
itory effects on the Ul and ACH-2 cellular
systems (8). Thus, the DIBA-type com-
pounds effectively blocked production of
virus from previously infected cells by in-
hibiting an event during the late phase of
infection.

Coordination of the p7NC CCHC mo-
tifs with zinc results in intrinsic fluores-
cence because of exposure of a tryptophan
residue in the second finger to the aqueous
environment (2). Consequently, ejection of
zinc from the fingers can be detected by
measuring the quenching of this fluores-
cence. The fluorescence intensity of puri-
fied p7NC (363.8 = 7.9, mean *= SD; n
=3) was readily quenched after 30 min by
DIBA-1 (81.0 + 1.4) and DIBA-2 (38.3 +
0.5), and less so by DIBA-3 (233.3 = 3.7)
and DIBA-4 (216 * 5.4), but DIBA-5
(357.3 = 5.2 ) was unreactive, as was AZT
(9). These data indicated that only those
DIBA compounds with antiviral activities
evoked the release of zinc from the fingers.

The chemical mechanism of action of
the compounds on the zinc finger was fur-
ther investigated by analysis of the reaction
products by high-performance liquid chro-

p7NC
DIBA-5

Monomer

DIBA-1

DIBA-2 M

DIBA-3
DIBA-4

B + B-Me w—_—»L

Fig. 3. Actions of the DIBAs on the HIV-1 p7NC
protein zinc fingers. The p7NC protein was diluted
t0 40 pg/mlin 10 mM sodium phosphate buffer (pH
7.0), treated with 25 pM of each DIBA compound,
and the products of the reaction analyzed by re-
versed-phase HPLC on a Waters w-Bondapak
C-18 column. Elution positions for the reactants
and products are indicated: p7NC resolved in peak
A and p7NC products from the reactions resolved
in peak B. Shaded areas indicate the protein-
aceous material. DIBA-3 and -4 yielded mixed di-
sulfide covalent adducts that influenced the chro-
matographic character of the modified protein; de-
pending on the reaction conditions, mixed disul-
fides could also be observed with DIBA-1 and -2.
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matography (HPLC) separation (Fig. 3).
Only the DIBA compounds that inhibited
HIV-1 replication (but not the inactive
DIBA-5 isomeric congener) elicited a de-
crease in the amounts of native p7NC pro-
tein (peak A) and a concomitant produc-
tion of a new protein (peak B). Protein that
eluted in peak B was reduced with 2-mer-
captoethanol and reanalyzed by HPLC; it
eluted as p7NC, indicating that the zinc
finger cysteine thiolates of the p7NC in this
peak had become cross-linked by disulfide
bonds. A preparation of fully reduced mo-
nomeric DIBA, formulated by reduction of
dimeric DIBA-1 with 2-mercaptoethanol,
was unreactive with the zinc finger. These
findings differ fundamentally from the ef-
fects of antioxidants, which exert antiviral
effects only when added to cultures in mil-
limolar concentrations and in their reduced
form (10).

To determine whether the DIBA com-
pounds could also gain access to and inter-
act with the p7NC protein sequestered
within the enveloped virion, we treated
sucrose gradient—purified HIV-1 with each
compound, followed by SDS—polyacrylam-
ide gel electrophoresis (PAGE) separation
of the viral proteins under nonreducing
conditions and immunoblot analysis for the
p7NC protein. Compounds that ejected the
zinc from the p7NC protein (DIBA-1, -2,
-3, and -4) resulted in intermolecular disul-
fide bond formation among the cysteine
thiolates of the viral p7NC proteins, caus-
ing the p7NC protein to resolve as an ag-
gregate (11), and cross-linkage of the virion
pINC correlated with the ability of the
compounds to inactivate HIV-1 infectivity
in a concentration-dependent manner (12).
Furthermore, mechanistic studies deter-
mined that the antiviral mode of action of
DIBAs correlated with a specific attack on
the zinc fingers but not with inhibition of
virion attachment, RT, or protease (13).

We have previously isolated resistant mu-
tants by coculture with nucleoside RT inhib-
itors (3TC) (14), various NNRTIs (such as
nevirapine, thiazolobenzimidazole, and ox-
athiin carboxanilide) (15), protease inhibi-
tors (KNI-272) (16), and inhibitors of viral
attachment and fusion (cosalane) (17) with-
in three to six passages (~2 months in cul-
ture). However, attempts to isolate mutants
resistant to the DIBA compounds from HIV-
I—infected cultures have been unsuccessful
after more than a year in passage.

Pharmacokinetic studies in mice revealed
that DIBA-1 and DIBA-2 were rapidly elim-
inated from plasma after intravenous injec-
tion, and systemic availability upon oral dos-
ing proved to be negligible (<0.5%) for both
compounds. DIBA-3 was not considered a
viable candidate for development because of
its poor chemical stability under physiologic
conditions. However, DIBA-4 did exhibit
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appealing oral bioavailability properties. A
single oral dose of 250 mg per kilogram of
body weight, which appeared to be well tol-
erated by the mice, provided a peak total
drug concentration (18) of 103 uM in plas-
ma at 34 min after administration. Thereaf-
ter, plasma concentrations decreased slowly,
remaining within the range effective against
HIV-1 in vitro for at least 12 hours. Analysis
of the plasma profile suggested that the ab-
sorption of DIBA-4 was complex, being nei-
ther a purely first-order nor zero-order pro-
cess. The systemic availability of oral
DIBA-4 was 39.8% (19).

The retroviral CCHC zinc finger motif
stands as a rare conserved feature against a
background of extreme variation among
retroviral components (20). Albeit this fact
suggests that mutational circumvention of
reagents that selectively target the retrovi-
ral zinc finger may be difficult for the virus
to achieve, only long-term studies of infect-
ed cultures and clinical experience with the
DIBA-type compounds can fully address
this issue. Nevertheless, our studies should
provide a powerful impetus for utilization of
the zinc finger as an antiretroviral target,
and this concept should be included in
strategies for the development of effective
drugs for the treatment of HIV infection
and other retrovirus-based diseases.
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Prevention of SIV Infection in Macaques by
(R)-9-(2-Phosphonylmethoxypropyl)adenine
Che-Chung Tsai,” Kathryn E. Follis, Alexander Sabo,

Thomas W. Beck, Richard F. Grant, Norbert Bischofberger,
Raoul E. Benveniste, Roberta Black

The efficacy of pre- and postexposure treatment with the antiviral compound (R)-9-(2-
phosphonylmethoxypropyl)adenine (PMPA) was tested against simian immunodeficiency
virus (SIV) in macaques as a model for human immunodeficiency virus (HIV). PMPA was
administered subcutaneously once daily beginning either 48 hours before, 4 hours after,
or 24 hours after virus inoculation. Treatment continued for 4 weeks and the virologic,
immunologic, and clinical status of the macaques was monitored for up to 56 weeks.
PMPA prevented SIV infection in all macaques without toxicity, whereas all control
macaques became infected. These results suggest a potential role for PMPA prophylaxis
against early HIV infection in cases of known exposure.

An urgent need for new antiretroviral
drugs has become evident as more people
worldwide are exposed to and become in-
fected with HIV. Currently, 3'-azido-3'-de-
oxythymidine (AZT; also called zidovu-
dine) is the most widely used antiviral agent
in both single and combination strategies
for the treatment of acquired immunodefi-
ciency syndrome (AIDS). Unfortunately,
AZT has limited efficacy against HIV in-
fection, and treatment can lead to drug
toxicity and the emergence of drug-resistant
strains of the virus (1). Drugs that are more
efficacious and less toxic than AZT are
clearly needed.

Several acyclic nucleoside phosphonate
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analogs have been developed that exhibit ac-
tivity against retroviruses in vitro (2). Initial
phosphorylation is not required for activation
of these reverse transcriptase inhibitors, and
therefore they may have activity in a wider
range of cell types as compared with AZT
(2, 3). One of these compounds, 9-(2-phos-
phonylmethoxyethyl)adenine (PMEA), has
shown efficacy against SIV in macaques but
with mild-to-moderate toxic side effects in
the form of skin lesions (3-5). A related acy-
clic nucleoside phosphonate, (R)-9-(2-phos-
phonylmethoxypropyl)adenine (PMPA), has
shown potent in vitro efficacy against HIV-1
and Moloney murine sarcoma virus (6), as
well as SIV (Table 1). These in vitro results
prompted us to design an efficacy study of
PMPA against SIV in macaques as a model for
evaluating HIV therapies (7).

Thirty-five age-matched, naive, juve-
nile, long-tailed macaques (Macaca fascicu-
laris) were housed individually in a biolog-
ical safety level 3 animal facility (8). Each
macaque was inoculated intravenously with
1 ml of a 10® cell culture infectious dose
(equivalent to 10 times the 50% monkey
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