provide a conclusive demonstration of the principle of the enhancement of nonlinear optical response through the supramolecular engineering of polymers. It is expected that considerably larger enhancement can be observed in structures with better alignment of chromophores, such as certain biopolymers and derivatives of helical poly(triphenylmethylmethacrylate)s (16).

REFERENCES AND NOTES

- See, for example, P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
- J.-M. Lehn, Supramolecular Chemistry (VCH, Weinheim, Germany, 1995).
- [•] 3. K. Clays et al., Science **262**, 1419 (1993).
- 4. E. Kelderman et al., Adv. Mater. 5, 925 (1993)
- 5. C. T. O'Konski, K. Yoshioka, W. H. Orttung, *J. Phys. Chem.* **63**, 1558 (1959).
- R. J. M. Nolte, A. J. M. van Beijnen, W. Drenth, J. Am. Chem. Soc. 96, 5932 (1974); R. J. M. Nolte, Chem. Soc. Rev. 23, 11 (1994).
- 7. M. N. Teerenstra et al., Thin Solid Films 248, 110 (1994).
- R. J. M. Nolte and W. Drenth, in *New Methods for Polymer Synthesis*, W. J. Mijs, Ed. (Plenum, New York, 1992), pp. 273–310. For a discussion of the structure of poly(isocyanide)s, see also M. M. Green, R. A. Gross, F. C. Schilling, K. Zero, C. Crosby III,

Macromolecules **21**, 1839 (1988); C. Kollmar and R. Hoffman, *J. Am. Chem. Soc.* **112**, 8230 (1990).

- C. J. M. Huige, A. M. F. Hezemans, R. J. M. Nolte, W. Drenth, *Recl. Trav. Chim. Pays-Bas* **112**, 33 (1993).
 R. W. Terhune, P. D. Maker, C. M. Savage, *Phys.*
- *Rev. Lett.* **14**, 681 (1965).
- K. Clays and A. Persoons, *ibid.* 66, 2980 (1991); *Rev. Sci. Instrum.* 63, 3285 (1992).
- T. Verbiest, E. Hendrickx, A. Persoons, K. Clays, in Nonlinear Optical Properties of Organic Materials V, D. J. Williams, Ed. [Proc. SPIE 1775, 206 (1993)].
- G. S'heeren, L. Derhaeg, T. Verbiest, C. Samyn, A. Persoons, *Makromol. Chem., Makromol. Symp.* 69, 193 (1993).
- R. S. Becker, Theory and Interpretation of Fluorescence and Phosphorescence (Wiley, New York, 1969), chap. 16.
- R. Bersohn, Y.-H. Pao, H. L. Frisch, J. Chem. Phys. 45, 3184 (1966).
- T. Nakano, Y. Okamoto, K. Hatada, J. Am. Chem. Soc. 114, 1318 (1992).
- 17. M. N. Teerenstra et al., in preparation.
- 18. Supported by grants from the government of Belgium (IUAP-16), the Belgian National Science Foundation (FKFO 9.0011.92), and the University of Leuven (GOA95/1) (to M.K., T.V., C.B., K.C., and A.P.) and from the Dutch Ministry of Economical Affairs (IOP-PCBP 105) (to M.N.T., A.J.S., and R.J.M.N.). M.K. is a research fellow of the University of Leuven; T.V. is a postdoctoral researcher
 - gian National Fund for Scientific Research (NFWO). 11 July 1995; accepted 11 September 1995

and K.C. is a senior research associate of the Bel-

Carbon Dioxide and Oxygen Isotope Anomalies in the Mesosphere and Stratosphere

Mark H. Thiemens,* Teresa Jackson, Edward C. Zipf, Peter W. Erdman, Cornel van Egmond

Isotopic (δ^{17} O and δ^{18} O) measurements of stratospheric and mesospheric carbon dioxide (CO₂) and oxygen (O₂), along with trace species concentrations (N₂O, CO, and CO₂), were made in samples collected from a rocket-borne cryogenic whole air sampler. A large mass-independent isotopic anomaly was observed in CO₂, which may in part derive from photochemical coupling to ozone (O₃). The data also require an additional isotopic fractionation process, which is presently unidentified. Mesospheric O₂ isotope ratios differed from those in the troposphere and stratosphere. The cause of this isotopic variation in O₂ is presently unknown. The inability to account for these observations represents a fundamental gap in the understanding of the O₂ chemistry in the stratosphere and mesosphere.

The measurement of stable isotope ratios of atmospheric species provides a powerful method for investigating chemical transformation mechanisms in the atmosphere. A particularly important example is stratospheric O_3 , for which an ¹⁸O enrichment of up to 40% in the ¹⁸O/¹⁶O ratio has been observed (1–4). In laboratory studies of isotopic fractionation during O_3 formation, O_3 was produced that was enriched in the heavy isotopes, with $\delta^{17}O = \delta^{18}O$, rather than δ^{17} O = 0.5 δ^{18} O (5, 6). The isotope ratios were thus distributed in a mass-independent manner; in a mass-dependent process, the δ^{18} O variation would be twice that of δ^{17} O because the relative mass difference is doubled (5). It has been demonstrated that the anomalous fractionation occurred in the $O + O_2$ recombination step and was mediated by molecular symmetry factors (7). Many of the observed stratospheric O ¹⁸O enrichments are significantly greater than those observed in laboratory experiments, which are at most 150 per mil (8-10). To date, there is no consistent explanation for this large discrepancy or for the observed variability of the ¹⁸O enrichment

SCIENCE • VOL. 270 • 10 NOVEMBER 1995

in stratospheric O_3 . The inability to account for these observations represents a fundamental gap in the understanding of stratospheric O_3 chemistry.

Stratospheric CO_2 has also been shown to be enriched in ^{18}O in comparison with tropospheric CO_2 (11–13), and it has been shown that stratospheric O_2 isotopes are mass-fractionated independently (12). It has been proposed that the CO₂ enrichment may arise from isotopic exchange between CO₂ and O(^{1}D), with O(^{1}D) derived from O_3 photolysis (14). Laboratory experiments demonstrated that isotopic exchange between $O(^{1}D)$ and CO_{2} produces a mass-independent fractionation, with equal enrichment in the heavy isotopes in CO_2 (15). Recent simultaneous δ^{17} O and δ^{18} O measurements of stratospheric CO₂ have demonstrated that the magnitude of the mass-independent isotopic anomaly linearly correlates with ¹⁴CO activity, which confirms the stratospheric origin of the isotopic enrichment (13). The use of simultaneous isotope ratio measurements ($\delta^{17}\text{O}$ and δ^{18} O) thus offers an insight into atmospheric chemical processes that cannot be obtained from concentration or measurements of single (δ^{18} O) isotope ratios.

The observation of photochemical coupling between stratospheric O_3 and CO_2 has several implications. First, the CO_2 isotopic measurements provide another probe of the overall oxidation processes of the upper atmosphere (13). In particular, estimates of the $O(^{1}D)$ density can be obtained, which determines the lifetime of some of the more long-lived species, such as N₂O, and is an integral component of the radiative budget of the upper atmosphere. Second, the O_2 isotopes provide another measure of stratosphere-troposphere mixing.

Here, we report the simultaneous measurement of the δ^{17} O and δ^{18} O composition of CO_2 and O_2 and the concentrations of N₂O, ČH₄, and CO from samples taken in the altitude range of 30 to 60 km. Samples were taken with the use of the rocket-borne cryogenic whole air sampler (CWAS) described by Erdman and Zipf (16). The system uses closed-cycle refrigerators to chill 1.8-kg, gold-plated blocks to approximately 15 K. Pneumatically actuated valves open and close at predetermined times to collect whole air samples, with altitudes and sampling column lengths (~1.1 km) determined by radar. The payload is launched by a two-stage Nike-Orion rocket. The two sampling missions reported here (March and May 1992, with two launches for each mission) were launched from the White Sands Missile Range (WSMR), New Mexico (32.4°N, 253.7°E), with three samples collected per flight (Table 1). The altitudes of the samples, the sampling interval, and the absolute sample sizes were nearly iden-

M. H. Thiemens and T. Jackson, Department of Chemistry 0356, University of California at San Diego, La Jolla, CA 92093, USA.

E. C. Zipf, P. W. Erdman, C. van Egmond, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA.

^{*}To whom correspondence should be addressed.

tical for the flights, which shows the reproducibility of the measurements. To ensure quantitative collection, we measured the amount of air within the samplers and compared it to that expected for a sampling interval. The quantity of air collected matched that expected for the sampling profile within $\pm 5\%$.

Here, the CO₂ was cryogenically separated from the whole air samples. For O₂ isotopic analysis, the CO₂ was quantitatively converted to O₂ to permit δ^{18} O and δ^{17} O measurements. The CO₂ was reacted with BrF₅ in a Ni tube at 800°C for 48 hours (17). Isotope measurements were made in a mass spectrometer (Finnigan MAT 251). Whole air aliquots were taken for separation and isotopic analysis of O₂ as described (18).

The isotopic data (Fig. 1) were all fractionated mass-independently—that is, $\delta^{17}O$ \neq 0.5 δ^{18} O. The mass-independent isotopic composition was of the same magnitude as that reported in (12) for stratospheric samples collected by balloon flight. There is a clear relation between the isotopic data and trace species concentration profiles (Fig. 2). Concerning the relative behavior of δ^{18} O versus CH₄ and N₂O concentrations with altitude, at 35 and 40 km for the flights in March and May, a peak in the $\delta^{18} O$ profile was observed. Methane and N2O possess a similar structure, and this was attributed to the transport of stratospheric air derived from equatorial latitudes (19). The quasimirror image behavior for both data sets may arise from the involvement of $O(^{1}D)$; elevated O(¹D) levels increase the δ^{18} O in CO₂ while simultaneously lowering the N₂O and CH₄ concentrations because reaction with $O(^{1}D)$ is their dominant sink (20). Such enhanced levels of $O(^{1}D)$ require a stratospheric source for the transported air parcel. The height of the observed

Fig. 1. A three-isotope plot showing the O2 isotopic composition of atmospheric CO₂ for different fractionation processes. Line A represents the bulk terrestrial mass fractionation line, whereas line B results from additional isotopic exchange between tropospheric CO2 and $O(^{1}D)$. Line **C** represents the measured range of tropospheric CO₂ isotopes (12). Line D is the best-fit line for the O2 isotopic composition of the upper atmospheric CO₂ samples measured here; asterisks represent the March, and squares the

fold is apparently seasonal, with the winter peak occurring at higher altitudes than that for spring. This variation may reflect stratospheric and mesospheric circulation dynamics, given that meridional transport differs between winter and summer (21).

The interaction between $O(^{1}D)$ and CO_{2} is consistent with the laboratory data of Wen and Thiemens (15), who showed that the production of the short-lived CO₃* transition state, intermediate in the isotopic exchange between CO_2 and $O(^1D)$, produces a mass-independent isotopic composition in CO₂, with equal ¹⁷O and ¹⁸O enrichments in $\tilde{C}O_2$. Enhanced values of $\delta^{18}O$ in CO_2 derive from higher number densities of atomic O, longer interaction times, or both. The anti-correlation between the atmospheric ¹⁸O enrichment and the N₂O and CH_4 mixing ratios reflects increased O_3 photolysis, the source of $O(^{1}D)$. The critical proof is the observation of the mass-independent isotopic composition.

At 55 km (27 May flight), a peak in $\delta^{18}\!O$ exists but without an accompanying CH_4 inflection. This suggests that the mesosphere may be a contributor to the O_2 isotopic composition of stratospheric CO_2 , because of larger amounts of atomic O and smaller amounts of CH₄. Injection of mesospheric air would thus be detectable from the O_2 isotopic signature but not from the CH4 concentration. The CO altitudinal data also suggest inputs of mesospheric air. For both sampling missions, an increase in the CO mixing ratio above 40 km was observed, which indicates a mesospheric source. Carbon monoxide in this altitudinal region primarily comes from mesospheric CO_2 photolysis (22). The lack of a corresponding dip in the N₂O and CH₄ data and their suppressed concentrations with respect to the measurements in

March also suggest the injection of upper level air rich in $O({}^{1}D)$ and CO and depleted in CH₄ and N₂O.

Another important feature associated with the CO_2 isotopic data in Fig. 1 is that the data define a straight line with a slope nearly 1.0. If the isotopic composition were a result only of the process of isotopic exchange with $O(^{1}D)$, the best-fit line should have a slope = 1.0 and pass through the isotopic composition of tropospheric CO_2 $(\delta^{18} \dot{O} \approx 40 \text{ per mil}, \delta^{17} O \approx 20 \text{ per mil})$. The observed best-fit line of the stratospheric CO₂ isotopic data does not intersect the terrestrial fractionation line at the tropospheric value but rather at a value for δ^{18} O of approximately 34 per mil. These observations require an additional process, along with exchange between $O(^{1}D)$ and CO_{2} . It has been shown (15) that isotopic exchange between O(¹D) and CO₂ defines a δ^{17} O = δ^{18} O fractionation line passing through the bulk CO₂ reservoir.

The expected isotopic fractionation line (Fig. 1) would arise if $O({}^{1}D)$ exchanged with CO_{2} of approximate tropospheric isotopic composition (CO_{2} at 1300 m at White Sands has an isotopic composition of $\delta^{18}O$ of 41.5 per mil). The data clearly do not pass through the $\delta^{18}O$ value of tropo-

Fig. 2. δ^{18} O profiles for CO₂ and O₂ isotopic composition and CH₄ and N₂O mixing ratio profiles for samples taken on (**A**) 12 and 15 March 1992 and (**B**) 22 and 27 May 1992. The mixing ratios for N₂O and CH₄ are in parts per billion and parts per billion/10, respectively. Note the anti-correlation between the ¹⁸O enrichment and the N₂O and CH₄ mixing ratios, which is indicative of increased O₃ photolysis, the source of O(¹*D*).

May, data. The data define a line of slope 1.16, with a linear regression constant of 0.98. The offset of line D from line B is the result of a secondary fractionation process, the source of which is at present unknown.

spheric CO₂ and require a second fractionation process that offsets the observed data. The source of this secondary fractionation process observed in the stratospheric and mesospheric samples is not known. Our CO observations along with the increasing magnitude of isotopic fractionation suggest a mesospheric origin for the fractionation. Stratospheric concentrations of $O(^{1}D)$ peak at an altitude of approximately 48 km with a number density of 200 to 300 cm⁻³ (23). The $O(^{1}D)$ concentrations rise rapidly by more than an order of magnitude in the mesosphere. The significantly enhanced levels of electronically excited atomic O would produce greater ¹⁷O,¹⁸O enrichments, which is consistent with our observations. The stratospheric isotopic CO_2 data reported by Thiemens *et al.* (12) agree with the data presented here, with the highest altitude samples (\sim 35 km) lying along the fractionation line D (Fig. 1), whereas the lower altitude samples lie on a line with a slope of ~ 1 passing through tropospheric CO2 values. Thus, the higher altitude samples appear to possess the greatest heavy isotope enrichment. Sampling artifacts can be ruled out as the CO₂ concentration for all altitudes was 350 ppm (parts per million), the amount expected if all the expected CO₂ was recovered.

It is not known what additional processes might occur in the mesosphere. For example, the effect of temperature on the exchange process is not known for the relevant in situ temperatures. The effect of ion-molecule reactions, for example, charge transfer, on isotopic composition is also unknown. Resolution of the source of this isotopic component is of importance as the magnitude of the anomalous component is sufficiently large that the absolute amount of energy required to produce the observed anomalous isotopic composition represents an important process in the upper atmosphere.

The molecular O₂ isotopic data also provided further evidence for mesospheric input into the stratosphere of isotopically distinctive components. All of the data in Table 1 agree with the tropospheric O_2 value, $\delta^{18}O = 23.5$ (24), within the error limit of ± 0.1 per mil; the only exceptions to this are the two uppermost March samples (δ^{18} O = 23.1 per mil), which differ by 0.4 per mil, significantly beyond error limits. This is the first observation of a variation in the O_2 isotopic composition of atmospheric O_2 . In hundreds of tropospheric measurements of air samples taken in the United States, Australia, and Europe, the value has been constant to within ± 0.04 per mil; thus, the mesospheric variation observed here is significant.

It has been suggested that an upper atmospheric process could alter the O2 isotopes on the basis of the measured O_2^{r} isotopic composition of extraterrestrial Fe spherules, which acquire their O2 at altitudes above ~ 100 km (25). It was suggested that a source of heavy O (δ^{18} O > 40 per mil) at this altitude may exist, and a gualitative model, based on calculations by Colegrove et al. (26), was provided. Because of the dominance of O₂ photolysis over recombination at altitudes above 80 km, there is a net downward flux of O atoms and upward flux of O2 molecules (26). During such motion in the atmosphere, the model predicts that the associated isotopic fractionation for O atoms is greater than that for O molecules because of the smaller mass of the former. The net result could be the creation of an isotopic composition with heavy isotope enrichment in the upper levels and light isotope (total O) enrichment in the lower levels (25). The lower level (light isotopes) of

 Table 1. Flight isotopic and trace species concentration data for the rocket-borne whole air cryogenic sampler. Isotopic compositions are reported with respect to standard mean ocean water (SMOW).

Date	Alti- tude (km)	Isotopic composition*							
		CO ₂		0 ₂				CO (ppbv)	CO ₂ * (ppm)
		δ ¹⁸ Ο	δ ¹⁷ Ο	δ ¹⁸ Ο	δ ¹⁷ Ο	N ₂ O (pppv)	CH4 (pppv)		
					Mar	ch 1992			
15	30.0	44.5	28.9	23.6	12.2	89.1 ± 2.4	933 ± 30	25.0 ± 3	350.2
15	35.2	48.4	33.0	23.4	12.0	27.0 ± 1.0	617 ± 20	40.5 ± 3	350.5
15	40.0	46.9	31.9	23.6	12.0	39.5 ± 1.2	670 ± 22	31.9 ± 3	350.2
12	46.1	45.7	31.7	23.4	12.0	21.8 ± 0.9	613 ± 20	56.1 ± 3	350.5
12	53.3	50.6	36.7	23.1	11.8	6.7 ± 0.5	363 ± 13	81.8 ± 3	350.3
12	59.5	54.9	40.5	23.1	11.8	2.2 ± 0.2	200 ± 9	126 ± 3	350.8
					Ma	y 1992			
22	29.3	46.1	30.1	23.5	11.8	70.8 ± 2.1	734 ± 24	25 ± 3	353.7
22	34.3	45.1	28.7	23.5	11.8	71.8 ± 2.1	780 ± 25	22 ± 3	353.6
22	39.1	48.5	34.6	23.4	11.8	27.2 ± 1.0	530 ± 18	18 ± 3	353.7
27	46.9	47.9	33.0	23.4	11.8	11.0 ± 0.5	406 ± 14	18 ± 3	353.4
27	54.2	52.2	38.2	23.5	11.8	2.2 ± 0.2	225 ± 10	44 ± 3	353.4
27	60.9	50.2	36.6	23.4	11.8	1.0 ± 0.2	125 ± 6	82 ± 3	353.4

*Uncertainties are approximately ± 0.2 ppmv (2 σ error bars)

this circulation cell would be the upper mesosphere, which could serve as a source of the isotopically light O_2 measured in the March flight. Although later measurement of the Fe isotopes in similar Fe spherules showed that the ¹⁸O enrichment derives from atmospheric evaporation effects (27), it is possible that some component of the features suggested in (25) is qualitatively correct. At present, no source of the isotopic fractionation process in O_2 can be specified conclusively; however, the CO_2 and O_2 isotopic data tentatively suggest that the source region is the upper mesosphere, particularly because the molecular O2 isotopic fractionation was observed in winter, when the net air mass trajectory is downward from the upper mesosphere (21).

Carbon dioxide photolysis may be considered a possible contributing factor to the observed CO₂ isotopic composition. It is known that at altitudes above 55 km, the primary CO source is photodissociation of CO_2 (22), consistent with our data here, which show increasing CO concentrations with increasing altitude. It is known that in O_2 photolysis the lighter isotopes are preferentially dissociated because of their higher relative vibrational frequency in a nearly mass-dependent fashion (28). If the same were true for CO_2 , the residual CO_2 would be isotopically heavy; however, our observations suggest that a light component is required. Photolysis would thus shift the data in the wrong direction. In addition, the measured CO_2/CO ratio at 59.5 km in the March flight was 2784; if all CO were derived from CO_2 photolysis, this CO_2/CO ratio would be too large to alter the CO_2 isotopic composition for any reasonable single-stage fractionation factor associated with CO₂ photolysis. The requirements are particularly forbidding at 30.0 km (March), where the CO_2/CO ratio is \sim 14,000; thus, our observations cannot be attributed purely to CO₂ photolysis effects. It is unclear at present what process, along with $O(^{1}D) + CO_{2}$ isotopic exchange, is responsible for the observed CO_2 isotopic data. The magnitude of the isotopic fractionation is large, and the process represents an important reaction in upper atmospheric chemistry.

Our results from the isotopic and trace species concentration data in whole air samples collected from flights of the rocketborne CWAS clearly show that combined isotope and trace species measurements provide a wealth of data that reflect both upper atmospheric chemical interactions and circulation dynamics. The isotope data reveal dynamic features that could not be obtained from only concentration or measurement of the ratios of single isotopes. Presently unexplained isotopic anomalies reside in both molecular O_2 and CO_2 . In addition, there are seasonal features observed in both the trace species and isotopic altitudinal profiles. Further measurements may define both the source of the anomalous fractionations and the seasonal character.

REFERENCES AND NOTES

- 1. K. Mauersberger, Geophys. Res. Lett. 8, 935 (1981).
- M. M. Abbas et al., J. Geophys. Res. 92, 13239 (1989).
- 3. A. Goldman et al., ibid. 94, 8467 (1989).
- B. Schueler, J. Morton, K. Mauersberger, *Geophys. Res. Lett.* **17**, 1295 (1990).
- 5. M. H. Thiemens and J. E. Heidenreich III, *Science* **219**, 1073 (1983).
- The δ notation is defined as follows: δ¹⁸O = (R¹⁸/R¹⁸_{std} 1) 1000; δ¹⁷O = (R¹⁷/R¹⁷_{std} 1) 1000. The subscript "std" refers to the conventional standard, which for O is standard mean ocean water (SMOW).
 R¹⁸ is the ¹⁸O/¹⁶O ratio, and R¹⁷ is the ¹⁷O/¹⁶O ratio.
 J. E Heidenreich III and M. H. Thiemens, J. Chem.
- *Phys.* **84**, 2129 (1986).
- 8. M. H. Thiemens and T. Jackson, *Geophys. Res. Lett.* **15**, 639 (1988).

- 9. J. J. Morton et al., J. Geophys. Res. 95, 901 (1990).
- S. M. Anderson et al., in *Isotope Effects in Gas Phase Chemistry*, J. A. Kaye, Ed. (American Chemical Society, Washington, DC, 1992), pp. 156–166; M. H. Thiemens, *ibid.*, pp. 138–154.
- 11. T. Gamo et al., Tellus 41B, 127 (1989).
- M. H. Thiemens, T. Jackson, K. Mauersberger, B. Schueler, J. Morton, *Geophys. Res. Lett.* 18, 669 (1991).
- M. H. Thiemens, T. L. Jackson, C. A. M. Brenninkmeijer, *ibid.* **22**, 255 (1995).
 Y. L. Yuna, W. B. Demore, J. P. Pinto, *ibid.* **18**, 13
- Y. L. Yung, W. B. Demore, J. P. Pinto, *ibid.* 18, 13 (1991).
 J. S. Wen and M. H. Thiemens, *J. Geophys. Res.* 98,
- 12801 (1993).
 P. Erdman and E. Zipf, *Rev. Sci. Instrum.* 53, 106
- (1982). 17. S. K. Bhattacharya and M. H. Thiemens, Z. Naturfor-
- sch. 44a, 435 (1989). 18. M. H. Thiemens and D. Meagher, Anal. Chem. 56,
- 201 (1984). The error associated with cryogenic separation of CO₂, fluorination, purification, and mass spectrometric analysis, based on replicated tropospheric CO₂ analysis and standard CO₂ conversion and measurement, is approximately \pm 0.1 per mil for both δ^{17} O and δ^{18} O. On the basis of analysis of several hundred tropospheric separations and anal-

Logic Gates Made from Polymer Transistors and Their Use in Ring Oscillators

A. R. Brown,* A. Pomp, C. M. Hart, D. M. de Leeuw

Metal-insulator-semiconductor field-effect transistors have been fabricated from polymer semiconductors that can be processed from solution. The performance of these transistors is sufficient to allow the construction of simple logic gates that display voltage amplification. Successful coupling of these gates into ring oscillators demonstrates that these logic gates can switch subsequent gates and perform logic operations. The ability to perform logic operations is an essential requirement for the use of polymer-based transistors in low-cost low-end data storage applications.

One major application for polymeric metalinsulator-semiconductor field-effect transistors (MISFETs) (1-4) is in low-end data storage, such as chip cards and identification tags. Here the use of crystalline silicon technology is inappropriate: The excellent electrical performance of silicon, in terms of switching speed and small volume, is not required, and the bonding of silicon chips onto flexible plastic substrates dominates costs. The component parts of a MISFET are an insulator layer, conducting contacts, and a semiconductor layer. Soluble organic insulators are well known [such as poly(methyl methacrylate) and poly(vinyl chloride)], and recently Garnier et al. (2) have demonstrated that conducting contacts for such polymer MISFETs can be achieved by printing techniques. If a solution-processible organic semiconductor is also used, low-cost largearea electronics for data storage can be realized by using only printing processing steps directly onto plastic substrates (rendering expensive photolithographic steps obsolete and avoiding incompatibility problems).

However, electronic circuits with a polymer as the active semiconductor have not been reported. Until now, polymer MISFETs have not been able to display voltage amplification, which is a fundamental requirement for the construction of useful logic gates. Only if the logic gates can switch subsequent gates does integration become

Fig. 1. Chemical structures of pentacene, PTV, and their precursors. Both elimination reactions occur at 140° C for 1 hour; pentacene is realized in vacuo and PTV in N₂ and HCl.

SCIENCE • VOL. 270 • 10 NOVEMBER 1995

ysis, for O₂ the error is ± 0.04 per mil for δ^{18} O and 0.08 per mil for δ^{17} O. The amount of O₂ measured from the different flights was identical; thus, the error is assumed to be the same.

- M. R. Gunsun *et al.*, *J. Geophys. Res.* **95**, 13867 (1990).
- 20. E. B. Burnett and C. R. Burnett, J. Atmos. Chem. 21, 13 (1995).
- 21. G. Brasseur and S. Solomon, *Aeronomy of the Middle Atmosphere* (Reidel, Dondrecht, 1984), pp. 32–82.
- M. Allen, Y. Y. Yung, J. W. Waters, J. Geophys. Res. 86, 3617 (1981).
- 23. P. M. Banks and G. Kockarts, *Aeronomy, Part A* (Academic Press, New York, 1973).
- P. Kroopnick and H. Craig, *Science* **175**, 54 (1972).
 R. N. Clayton, T. K. Mayeda, D. E. Brownlee, *Earth*
- *Planet. Sci. Lett.* **79**, 235 (1986). 26. F. D. Colegrove *et al.*, *J. Geophys. Res.* **70**, 4931
- (1965).
- 27. A. M. Davis *et al.*, *Lunar Planet. Sci.* XXII, 281 (1991). 28. S. K. Bhattacharya and M. H. Thiemens, *Geophys.*
- Res. Lett. 15, 9 (1988).
 29. We gratefully acknowledge NSF (grant ATM-9321202) and the National Aeronautics and Space Administration

22 June 1995; accepted 8 September 1995

(grant NAG 5-609) for support,

possible. We report here on the successful construction of polymer MISFETs that do display voltage amplification. Two different solution-processible organic semiconductors were used. The MISFETs have been used to fabricate both inverter and NOR gates. Switching of one gate by another is demonstrated in ring oscillators constructed from five identical coupled stages.

These gates have been realized with the use of precursor-route through-conjugated polymers. Through-conjugated polymers are intractable, being neither soluble nor fusible. Solution processibility has been successfully introduced to conjugated polymers such as polythiophenes and poly(paraphenylenes) by the introduction of solubilizing side chains (for example, alkyl and alkoxy groups). However, these side chains have a detrimental effect on the charge-carrier mobility because they both decrease throughconjugation (1) and decrease π - π overlap of neighboring chains (5). In a precursor route, solubilizing side chains are chosen that can be eliminated later to leave only the through-conjugated polymer. Hence, precursor polymers are particularly suited to be the active semiconductor in polymeric MISFETs, combining solution processibility with good electrical properties (6). Here we use oligomeric pentacene and fully polymeric poly(thienylenevinylene) (PTV),

Fig. 2. Schematic cross section of transistors used in this study.

Philips Research Laboratories, Professor Holstlaan 4, 5656 AA Eindhoven, Netherlands.

^{*}To whom correspondence should be addressed.