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sized 0.5 to 25 kb was sliced into 10 fractions. Gel 
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Mutations in the Dystrophin-Associated 
Protein y Sarcoglycan in Chromosome 1 3 

Muscular Dystrophy 
Satoru Noguchi,* Elizabeth M. McNally, Kame1 Ben Othmane, 

Yasuko Hagiwara, Yuji Mizuno, Mikiharu Yoshida, 
Hideko Yamamoto, Carsten G. Bonnemann, Emanuela Gussoni, 

Peter H. Denton, Theodoros Kyriakides, Lefkos Middleton, 
Faycal Hentati, Mongi Ben Hamida, lkuya Nonaka, 
Jeffery M. Vance, Louis M. Kunkel, Eijiro Ozawa 

Severe childhood autosomal recessive muscular dystrophy (SCARMD) is a progressive 
muscle-wasting disorder common in North Africa that segregates with microsatellite 
markers at chromosome 13q12. Here, it is shown that a mutation in the gene encoding 
the 35-kilodalton dystrophin-associated glycoprotein, y-sarcoglycan, is likely to be the 
primary genetic defect in this disorder. The human y-sarcoglycan gene was mapped to 
chromosome 13q12, and deletions that alter its reading frame were identified in three 
families and one of four sporadic cases of SCARMD. These mutations not only affect 
y-sarcoglycan but also disrupt the integrity of the entire sarcoglycan complex. 

T h e  muscular dystrophies are genetically 
heterogeneous (1 ). X-linked recessive mus- 
cular dystrophy, or Duchenne muscular dys- 
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Kunkel. Divislon of Genetlcs and the Howard Huahes 

trophy (DMD), is the most common form 
and arises from mutations in the dystrophin 
gene (2). Autosomal inheritance is present 
in a significant percentage of muscular dys- 
trophy cases ( 1 ,  3). In North Africa, the 
incidence of SCARMD [OMIM 253700 
( I ) ] ,  also referred to as limb girdle muscular 
dystrophy (LGMD) 2C (4), accounts for 10 
to 50% of the total muscular dystrophy cases 
15. 6). The earlv ape of onset and severitv of ~, , , - 

~ e d i c a l  Institute, Ch~ldren's Hospital, Boston, -MA the clinical course seen in ~~~~h ~ f ~ i ~ ~ ' ~ ~ ~  
021 55, USA. 
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Fig 1. The deduced amino -T EGICIERPEN QYWKIGIYG ,LW L L L L I I L ~  50 
acid seauence of human AG L TH c L 

y-sarcoglycan (16). The ami- 
no adds listed below the hu- r m  W S P F  LCIPPWGLRL EGESEFLFPL YAKEIHSRW 100 ' 

1 

fTlan ~-sarcoglycan p o m p  
n 

tide are those residues of rab- S~~ ~ ~ A R N S K :  i n m u ~ ~ p  KMVEVQNEQF Q- 150 

bit y-sarcoglycan that differ D Q s RE s 
from human y-sarcogm. PIWEKEWV GTDKUWEP EGALFEHSVE TPLVRADPFQ DLRLESFTRS 200 
The rabbit cDNA was identi- E R T 

fied with a monoclonal anti- 
body the 35-kD DAG L- L m I L F H S  =- ~~~ 250 

E EV VL T 
(15, 17). The putative trans- 
membrane domain (amino 'IWGPSGSSQS LYEICVCPDG KLYLSVAGVS TI'CQEHSHI~ L* 292 
acids 36 to 601 is boxed. Po- OAA AT. 

tential asparaiine-linked glycosylation and phosphorylation sites are boldface and shaded, respectively. 
Five conserved cysteine residues are present in the distal carboxyl potion (underlined). The human and 
rabbit sequences have been deposited in GenBank under the accession numbers U34976 and U36822, 
respectively. 

gesting a widespread founder mutation in 
this geographic region (8). Linkage of 
SCARMD with chromosome 13 markers 
has been confirmed in Algerian and Moroc- 
can as well as non-North African families 
(8, 9). 

Dystrophin is an elongated, cytoskeletal 
protein whose amino terminus binds actin 
(10). The carboxyl terminus of dystrophin 
is anchored to the sarcolemma as a macro- 
molecular com~lex with the dvstro~hin-as- 
sociated glycoproteins (DAGH) ( i l ,  12). 
The DAGs can be separated into at least 
two complexes (1 3). The first, dystroglycan, 
binds the extracellular matrix protein lami- 
nin, completing a bridge from actin to the 
extracellular matrix (12, 14). The second, 
sarcoglycan, comprises three distinct trans- 
membrane proteins: a-sarcoglycan (adha- 
lin, 50-kD DAG, or A2), P-sarcoglycan 
(A3b), and the 35-kD DAG (A4) (13). We 
show that alterations of the gene encoding 
the 35-kD DAG, here named y-sarcogly- 
can, are likely to be the primary genetic 

defect in North African and a subset of 
sporadic SCARMD cases. 

Rabbit and human complementary DNAs 
(cDNAs) encoding y-sarcoglycan were iden- 
tified (15). The deduced amino acid sequence 
of rabbit y-sarcoglycan includes an amino- 
terminal peptide, AGEQYLTAT'&T (16), 
and a proteolytically derived peptide, DGLR- 
LEGES, prepared from purified rabbit skele- 

tal-muscle y-sarcoglycan (15), proving the 
identity of this cDNA as rabbit y-sarcoglycan. 
The predicted proteins encoded by the human 
and rabbit y-sarcoglycan cDNA sequences 
contain 291 amino acids and are highly con- 
sewed (89% identity and 93% similarity) 
(Fig. 1). The deduced molecular mass of rab- 
bit y-sarcoglycan is 31,840 daltons and that of 
human y-sarcoglycan is 32,350 daltons. The 
isoelectric points of rabbit and human y-sar- 
coglycan are 5.6 and 5.0, respectively, a dif- 
ference consistent with the slightly more acid- 
ic nature of human y-sarcoglycan on two- 
dimensional electrophoresis (1 7). The y-sar- 
coglycan protein is considered a type I1 
transmembrane protein with an extracellular 
carboxyl terminus (amino acids 61 to 291), 
because it has only a single transmembrane 
domain (amino acids 36 to 60), lacks an 
amino-terminal signal sequence, and has 
charged residues at amino acids 32 to 34. The 
cytoplasmic domain contains a potential 
phosphorylation site for casein kinase 11, and 
the extracellular domain contains one con- 
served asparagine-linked glycosylation site. 
There were no significant homologies with 
other proteins in the electronic databases 

kg 2. Expression of y-sarcoglycan mRNA in hu- 
man tissues. The y-sarcoglycan cDNA was radio- 
labeled and hybridized to poly A+ mRNA from the 
tissues shown. The size of the y-sarcoglycan 
mRNA is 1.7 kilobases (kb), consistent with the 
size of the cDNAs isolated from the hgtl0 cDNA 
libraries. 
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(18). The human y-sarcoglycan mRNA is 
expressed exclusively in striated muscle (Fig. 
2), both cardiac and skeletal. This expression 
pattern agrees well with the immunocyto- 
chemical survey of primate tissues that used a 
monoclonal antibody specific for y-sarcogly- 
can (1 7). 

Two overlapping genomic phages for the 
human y-sarcoglycan gene were found to 
hybridize to metaphase human chromosomes 
at 13q12 (1 9), the same region implicated in 
SCARMD families by linkage analysis. The 
minimal candidate reeion for SCARMD was - 
recently refined to a small region surround- 
ing D13S232, and a physical map of this 
minimal candidate region has been con- 
structed (20). Primers homologous to the 5' 
and to the 3' untranslated regions of the 
human y-sarcoglycan sequence hybridized 
within this minimal candidate region, and 
analysis of cDNAs obtained from direct se- 
lection with a yeast artificial chromosome 
spanning this same region included a y-sar- 
coglycan cDNA (20). 

Linkage disequilibrium with the marker 
D13S232 suggests that both alleles of the 
responsible gene should carry an identical mu- 
tation in North African SCARMD families. 
This linkage disequilibrium and the relatively 

Control LGMD X 

Fig 4. lmmunocytochemical analysis of the mus- 
cle biopsy from the patient with chromosome-1 3- 
linked SCARMD (LGMD 2C), who canies a ho- 
mozygous thymine deletion in the y-sarcoglycan 
gene. Ctyosections from unaffected muscle (A 
through D) and the patient's muscle (E through H) 
were immunostained for dystrophin (A and E), 
a-sarcoglycan (adhalin) (B and F), P-sarcoglycan 
(C and G), and y-sarcoglycan (D and H) (27). In the 
patient sample, the staining for three subunits of 
sarcoglycan was lost or greatly reduced (F, G, and 
H), whereas dystrophin staining was preserved 
(E). Bar = 50 pm. 

large percentage of patients with this autoso- 
ma1 recessive disorder are consistent with the 
high degree of consanguinity present in Tu- 
nisia. To determine the homozygous mutation 
responsible for SCARMD, we prepared RNA 
from a skeletal-muscle biopsy taken from an 
affected Tunisian SCARMD patient (21) 
whose family is consanguineous and demon- 
strates linkage disequilibrium with D13S232 
(7, 8). Direct sequencing of y-sarcoglycan 
polymerase chain reaction (PCR) products 
demonstrated that one of the thymine resi- 
dues from nucleotides (nt) 645 to 649 was 
homozygously deleted in the patient (Fig. 
3A). The thymine deletion was confirmed in 
the DNA of this patient (22). This mutation 
was also found in an affected sibling in this 
family and in two additional Tunisian 
SCARMD families but was not seen in 10 
unaffected chromosomes (22). The deletion 
of one thymine changed the reading frame at 
amino acid 175, creating a premature stop 
codon at amino acid 193. The aberrant y-sar- 
coglycan would retain its transmembrane an- 
chor and its asparagine-linked glycosylation 
site but lose the cluster of cysteine residues 
present in the distal portion of the protein. 
lmmunostaining of the patient's muscle 
showed a deficiency of all three sarcoglycan 
subunits, reflecting an instability of the entire 
complex (Fig. 4). 

To ascertain whether y-sarcoglycan muta- 
tions contribute to sporadic cases of 
SCARMD, we analyzed y-sarwglycan cDNA 
from several dystrophic muscle biopsies. Mus- 
cle biopsies from four Japanese patients were 
selected for this study because they displayed 
dvstro~hic architecture on hematoxvlin and , . 
eosin staining, deficiency of sarcoglycan, and 
preservation of normal dystrophin staining 
(23). Figure 3B shows a single-strand confor- 
mation polymorphism (SSCP) analysis of the 
reeion from nt 516 to 847 of the human 
y-iarcoglycan sequence (24). The lower band 
in lane 2 was seauenced: it corres~onded to a 
deletion of 73 dase pairs (bp), iroducing a 
stop codon at amino acid 170 of the aberrant 
y-sarcoglycan. In this case, as in the familial 
SCARMD, the carboxyl-terminal one-third 
of the y-sarcoglycan protein was lost, includ- 
ing the distal cysteine residues. At the time of 
this biopsy, the patient was too young to fully 
determine the severity of her disorder (25). 
Immunostaining of this patient's muscle 
showed that all of the sarcoglycan compo- 
nents of the muscle had been lost (23, 26). 

The tight association of the sarcoglycan 
subunits, as demonstrated by their ability to 
be biochemicatly cross-linked (1 3), suggests 
that sarcoglycan may function as a unit, 
although its role remains unknown. The 
observation that mutations in any one of 
the subunits result in the loss of the other 
subunits further supports this concept. Mu- 
tations that result in muscular dystrophy 
have been documented in the a-sarcogly- 

can locus (adhalin) and the P-sarcoglycan 
locus (27. 28). Given that mutations in anv 
one of the skrcoglycan subunit genes car; 
result in muscle weakness. we DroDose the . . .  
term "sarcoglycanopathy" as a collective 
name for these muscular dystrophies (29). 

Mutations in dystrophin produce a broad 
range of phenotype that include severe and 
mild forms of muscular dystrophy. We expect 
to find a similar broad range in each of the 
sarcoglycanopathies. Missense mutations in 
a-sarcoglycan are usually associated with a 
milder course of muscle wasting that may 
begin in the second or third decade. An 
exception to this mild course is seen when 
the mutations produce truncating stop 
codons (27). In the case of P-sarcoglycan, 
mutations that produce stop codons on both 
alleles result in a more severe, earlier onset 
muscular dvstro~hv similar to classical , . ,  
SCARMD whereas missense mutations are 
associated with a milder course (28). Muta- 
tions in y-sarcoglycan that produce a milder 
phenotype will likely be identified, and a 
genotype-phenotype correlation may emerge 
for predicting the clinical course, as has been 
successful for DMD. and its milder allelic 
counterpart, Becker muscular dystrophy. 
The identification of the y-sarcoglycan gene 
will aid in genetic counseling and diagnosis. 
Understanding the role of the sarcoglycan 
complex may ultimately affect therapy for 
these disorders. 
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