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Participation of the Human P-Globin Locus 
Control Region in Initiation O ~ ~ D N A  Replication 

&' 

Mirit I. Aladjem, Mark Groudine, Linnea L. Brody, 
Ellen S. Dieken, R. E. Keith Fournier, Geoffrey M. Wahl,* 

Elliot M. Epner 

The human p-globin locus control region (LCR) controls the transcription, chromatin 
structure, and replication timing of the entire locus. DNA replication waqfound to initiate 
in a transcription-independent manner within a region located 50 kilobases downstream 
of the LCR in human, mouse, and chicken cells containing the entire human p-globin 
locus. However, DNA replication did not initiate within a deletion mutant locus lacking the 
sequences that encompass the LCR. This mutant locus replicated in the 3' to 5' direction. 
Thus, interactions between distantly separated sequences can be required for replication 
initiation, and factors mediating this interaction appear to be conserved in evolution. 

T h e  human P-globin locus consists of five tion timing (2) .  Gene expression, chroma- 
linked genes, E, yA, yc, 6, and p, which tin structure (3, 4, 5), and replication tim- 
exhibit er~throid-specific, developmentally ing (6) are regulated by the LCR, an up- 
regulated expression (1 ). Replication of this stream element that contains five 
locus initiates from a region 5 '  to the P-glo- deoxyribonuclease (DNase) I hypersensi- 
bin gene regardless of expression or replica- tive sites (HSs) ( 1 ,  7). The  regulatory im- 
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portance of the LCR in the native chromo- 
somal context was established in naturally 
occurring deletions encompassing the LCR, 
the smallest of which (35 kb) deletes HSs 2 
to 5 and 20 to 25 kb 5' to HS5 (Hispanic . . > .  

E:S. Dieken and R. E. Keith Fournier, Fred Hutchinson thalassemia). Absence of this region pre- 
Cancer Research Center, Seattle, WA 98185, USA. vents P-globin expression in erythroid cells, 
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phase, and results in the entire locus being 
DNase I resistant. This influence is con- 
sewed in mouse-human somatic cell hy- 
brids containing either normal or thalasse- 
mic human chromosomes (6). Here we ad- 
dress the importance of LCR sequences, as 
defined by the Hispanic thalassemia, in the 
initiation of DNA replication. 

In somatic cell hybrids, we found that 
replication originates from the same initia- 
tion region (IR) 5' to the $-globin gene 
regardless of gene expression. Bidirectional 
initiation from a fixed site generates leading 
strands that are complementary to the 5'-3' 
template strand on one side of the IR, and 
to the 3'-5' template on the other side (8, 
9). We identified a leading strand template 
switch (Fig. 1) (10) in three cell lines: in 
NMEL, a murine erythroleukemia cell line 
containing a normal human chromosome 
11 (4, 5); in NMEL HR9, an NMEL clone 
containing a targeted insertion into the 
LCR between HS1 and HS2 (I I); and in 
DT40 HR9, a chicken B cell hybrid con- 
taining the HR9 chromosome (1 2-14). The 
HR9 insertion suppresses transcription of 
the P-globin gene (1 1). The leading strand 
switch was mapped 5' to the P-globin gene 
(units 61 through 64) in these hybrid cell 
lines, as well as in human erythroid (K562 
and HEL-R) and nonerythroid (293) cells. 
Thus, the IR is recognized in murine and 
avian nuclear environments regardless of 
the expression or of the identity of the 
expressed gene (K562 cells express y and E, 
and NMEL cells express P). 

Leading strands from TMEL, a hybrid 
cell line containing a human chromosome 
11 from a Hispanic thalassemia patient (6), 
displayed no strand switch at the 5' P-glo- 
bin IR, even though the IR is located more 
than 50 kb away from the deletion bound- 
ary (Fig. 1). Instead, the locus replicated 
apparently from a downstream initiation 
site. These results strongly indicate that 
sequences within or adjacent to the LCR 
are necessary for the activation of the 
p-globin IR. 

A second, independent strategy that 
measures the abundance and sizes of nascent 
DNA strands (15) was used to confirm the 
findings of the leading strand analysis. DNA 
probes hybridizing to short nascent strands 
indicate that the probe recognizes a region 
close to an IR; probes hybridizing to only 
long nascent strands recognize sequences 
that are more distant but within 20 kb of an 
IR; and probes that recognize sequences 
more than 20 kb away from an IR will not 
hybridize to nascent strands (16). Analyses 
of NMEL cells (15, 17) showed that two 
probes flanking the p-globin IR hybridized 
to short nascent strands (Fig. 2A). In con- 
trast, similar analyses of TMEL cells showed 
that the same probes hybridized only to long 
nascent strands (Fig. 2A). A probe from the 

81 6 

€-globin region, >20 kb 5' to the IR, did not 
hybridize to NMEL- or TMELderived nas- 
cent strands; thus, DNA replication did not 
initiate near the E-proximal sequence (16). 

A polymerase chain reaction (PCR) am- 
plification step was introduced into the nas- 
cent strand procedure to increase the sensi- 
tivity and to enable simultaneous analysis of 
multiple probes (Fig. 2, B and C) (18). PCR 
primers (19) between map units 59.9 (Fig. 
2B) and 65.5 (Fig. 2C) detected long and 
short nascent strands from NMEL cells, but 
only long strands (>9 kb) from TMEL cells. 
Primers homologous to sequences residing 
further 5' in the globin locus, map units 
33.3 (Fig. 2B), 45.8 (Fig. 2C), and 50.6 
(20), yielded no products from either cell 
line, as expected (16). Finally, primers lo- 
cated -7 kb 3' to the IR detected only 
longer strands in both cell lines (Fig. 2B). 
In NMEL cells, these strands may originate 
from the 5' IR or from another 3' IR. In 
TMEL cells, in which the 5' IR does not 
initiate, this result indicates that initiation 

Fig. 1. Leading strand analy- 
sis of replication in the p-glo- 
bin locus. (A) Leading strands 
(Ls) and notmal genornic (Ng) 
DNA were immobilized on slot 
blots and hybridized to 
strand-specific RNA probes 
(8, 9). Within the p-globin lo- 
cus, DNA strands traveling 
from the LCR (5') toward the 
p-globin gene (3') are desig- 
nated "top" strands, where- 
as the opposite strands are 
designated the "bottom" 
strands. Blots labeled "a" 
were hybridized to RNA 
prbbes transcribed from the 
top strand (probe a), and 
blots labeled "b" were hy- 
bridized toRNA probes tran- 
scribed from the bottom 
strand (probe b). The bias 
ratio was calculated as ( L d  
Ng for probe b)/(LdNg for 
probe a). Bias ratios larger 
than 1 imply that the top 
strand is the template for 
leading strands; therefore, 
the leading strands travel 
from the 6-alobin gene to- 

occurs 3' to the p-globin locus, in agree- 
ment with the leading strand data (Fig. I). 

The direction of DNA replication within 
the p-globin locus in NMEL and TMEL 
cells was further analyzed by fluorescent in 
situ hybridization (FISH) (2, 21). A cosmid 
probe will reveal a single hybridization dot 
per nucleus before DNA replication, where- 
as two hybridization dots will appear after 
replication of the target sequence (Fig. 3). 
When two cosmid probes labeled with dif- 
ferent reagents are hybridized simultaneous- 
ly, replication order is determined by the 
proportion of nuclei displaying two dots 
with one probe and one dot with the other 
probe (2). Table 1 shows that the IR repli- 
cated before the 5' €-globin region in both 
NMEL and TMEL cells. In NMEL cells, the 
5' E region replicated before the hereditary 
persistence of fetal hemoglobin (HPFH) re- 
gion, 70 kb 3' to the IR probe, whereas in 
TMEL cells the HPFH region replicated be- 
fore the 5' E region. Thus, the replication 
fork moved in the 3' to 5' direction in 

A Probe 4 Probe 11 Probe 14 Probe 15 
a b a b a b a b 

DT40 Ls + -- f, 

- - - 
HR9 ~ g +  , - - - - a - - -- - 

Bias: 2.77 1.49 

N- LS + , - - - - - - 
MEL Ng+ , -- - - - .  - I 

B~as: 1.81 1.61 0.77 0.36 

T- LS + - - - - - e .L 

MEL Ng+ - - - - .I - I - 
Bias: 2.58 1.58 1.88 3.28 

LCR 
4 , 'T_Y -- --- - + +  L - 
1 2  3 4 5  6 15 

10 - kb /~ 8 *:-P\ 

HEL-R 

293 

Lepore 

DT40HR9 

ward  the'^&. Bias ratios 
smaller than 1 indicate that the bottom strand is the template for leading strands traveling in the opposite 
direction. A strand switch was observed between probes 11 and 14 in NMEL and DT40 HR9 cells, but no 
switch was observed in TMEL cells. (B) Summaly of leading strand analyses. Probes (36) are represented 
in the map as short lines delimited by circles. Long vertical arrows indicate developmentally stable HSs, 
and short vertical arrows indicate tissue-specific HSs. Map units are in kilobases and refer to theglobin 
GeneBank sequence J00179. A single star indicates the origin consensus sequence (25) at map unit 58.5 
and two stars, the PUR protein binding site (37) at map unit 60.9. Probes within the IR, indicated by the 
line delimited by boxes (map units 61.2 to 62.5), are gray. Horizontal arrows represent the direction of 
leading strands synthesis as determined from hybridization bias ratios (10). A bias of more than 1.6 for a 
specific direction, if consistent between experiments, was considered sufficient for assigning a direction 
to leading strand synthesis. Within the origin region, biases were typically less than 1.5, and the inferred 
direction varied between experiments. The data for the Lepore deletion is quoted from (2) for comparison. 
Exp, expressed genes; delta (A) indicates a deletion. 
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TMEL cells, confirming the results obtained 
with the leading strand assay (Fig. 1). 

In contrast to the 3' to 5' replication 
observed in TMEL cells, the P-globin locus 
replicates from the 5' to 3' direction in cells 
from Lepore hemaglobinopathy patients, in 
which an 8-kb fragment encompassing the 
entire IR is deleted (2). This difference may 
be explained by a cryptic IR that is active in 
the Lepore cells and deleted in TMEL cells. 
Alternatively, this result may reveal suppres- 
sion of a 3' IR by sequences that are removed 
by the Hispanic deletion. Limiting initiation 

to one IR may prevent interference between 
two closely spaced IRs, as reported for adja- 
cent origins in budding yeast (22). 

Our results implicate that some vertebrate 
IRs are recognized by the replication machin- 
ery of other vertebrates. This result is consist- 
ent with the conserved initiation within a 
Syrian hamster CAD IR transfected into Chi- 
nese hamster cells (23), as well as with the 
apparent recognition of the Chinese hamster 
dihydrofolate reductase (DHFR) ori-P by a 
replication-competent protein extract from 
Xenopus oocytes (24). Interestingly, the P-glo- 

bin locus harbors a degenerate consensus se- 
quence shared by initiation sites in various 
metazoans (25) at map unit 58, slightly 5' to 
the mapped IR (Fig. 1B). 

The lack of IR function in TMEL hy- 
brids suggests that the sequences encom- 
passing the LCR, located 40 to 60 kb 5' to 
the IR, are necessary for origin activation. 
A similar interaction may occur in the Chi- 
nese hamster DHFR locus in which a dele- 
tion that abolishes transcription cannot ini- 
tiate replication from the distant ori-P (26). 
Importantly, the P-globin IR is functional 

Fia. 2. Nascent strand abundance analvsis. (4 A LA N T N T N T 

nascent strands [see (1  6)]. Primer pairs 65.5 (mid- • 
die), 59.9, and 61.9 (20) yielded products from all 
of the NMEL fractions and only from the longest 0 - e m  0 .  . . 
strands from TMEL cells. Primer pair 71.8 (far Plimers: 45.8 kb 59.9 kb 
right) yielded products only from long strands in 
both cell lines. (C) Analysis of nascent strands 
within the linear range of PCR amplification. Products were transferred to Lanes are as in (B); lane w, water. There was no detectable signal in.similar 
Southern blots and hybridized to digoxygenin-labeled oligonucleotides blots with PCR products obtained with primer pairs from positions 50.6 and 
complementary to sequences located between the PCR primers (18). 33.3 (20). 

Fig. 3. In situ hybridization analysis 
of replication direction in the p-glo- 
bin gene locus. In situ hybridiza- 
tions were performed with two 
probes labeled with dierent re- 
agents: CosB was detected as 
green and HPFH was detected as 
red (38). (A) NMEL cells. The top 
nucleus (wide mow) shows a dou- 
ble greeddouble red (WDR) pat- 
tem, and the bottom nucleus (nar- 
row mow) scores double green/ 
single'red (DG/SR). (8) A TMEL cell 
showing a single redlsingle green 
(SWSG) pattern. (C) A TMEL cell 
showing a double redlsingle green 
(DWSG) pattern. 
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Table 1. Summary of in situ hybridization mapping analysis. Nuclei were hybridized to three different 
probes throughout the P-globin locus (38). The percentage of cells hybridizing with the different probes 
is shown for NMEL and TMEL cells. Only cells where both slgnals could be visualized were scored. No 
cells scored DG/DR in TMEL cells. The IR region replicates before the 5' region in both cell lines. The 5' 
e-globin region replicates before the HPFH region in NMEL cells, whereas the HPFH region replicates 
before the 5' e region in TMEL cells. S/S, cells in which both probes hybridized to single dots; DR/SG, 
double red/single green cells; DG/SR double greedsingle red cells; and DG/DR, cells in which both 
probes hybridized to two dots. A small fraction of nuclei show an opposite pattern of hybridization in each 
case, which has been reported by others (2). 

Cells hybridizing to probes (%) 

Probe labels S/S 'DRISG DG/SR DG/DR Total Replication 
cells order 

NMEL 
Green 5' E 

red HPFH 60 1 23 16 142 5'&, HPFH 

Green 5' E 
red lR 75 18 5 3 114 IR,5'E 

TMEL 

Green 5' E 
red HPFH 84 14 2 - 44 HPFH, 5 ' ~  

Green 5' E 
80 18 2 

- 
red Ifl 49 IR,5'& 

5' E (C0S.B) 
Probes: HPFH 

LCR E YG YA 8 P 
-I 

IR 
4-+ 

50 kb 

in nonerythroid cells [Fig. 1 and (3)], in 
which the P-globin-like genes are silent, 
DNase I resistant, and late replicating (27, 
28). Moreover, it is also active in HR9 cells 
containing an insertion into the LCR that 
prevents P-globin gene expression (Fig. 1). 
Because subsets of LCR hypersensitive sites 
are present in HR9 (1 1 ) and nonerythroid 
cells (4, 5, 28), factors involved in the 
formation of hypersensitive sites may be 
necessary for origin activation. 

Interactions between enhancers and reD- 
lication origins are necessary for the initia- 
tion of replication in viral systems (29-31 ). 
This interaction mav be mediated throueh 

u 

chromatin structure modifications that re- 
lieve nucleosome-dependent repression (29, 
30). Enhancers also influence the time at 
which gene expression is induced during 
develo~ment (30) and the coincident con- 
versio; of DNA replication from random to 
preferred initiation regions (32). The LCR 
may provide an example of a developmen- 
tal-specific regulator (4, 5, 33) that confines 
initiation to the intereenic reeion in the 

transcription and on IR function may be 
dissociable. Alternatively, HR9 cells may be 
permissive for initiation because the LCR 
was modified after it established a compe- 
tent initiation region. 

A requirement for distant elements to 
initiate mammalian DNA replication may 
explain, in part, why small cloned frag- 
ments consisting solely of IRs typically fail 
to establish autonomous replication (9, 34) 
but can function within large yeast artificial 
chromosomes (35), episomes (23), or after 
integration into the genome (8, 23). Clear- 
ly, an important area for future investiga- 
tion will be to determine the sequences in 
the LCR or adjacent regions that contribute 
to replication initiation and the sites within 
the IR that interact with those sequences. 
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Severe childhood autosomal recessive muscular dystrophy (SCARMD) is a progressive 
muscle-wasting disorder common in North Africa that segregates with microsatellite 
markers at chromosome 13q12. Here, it is shown that a mutation in the gene encoding 
the 35-kilodalton dystrophin-associated glycoprotein, y-sarcoglycan, is likely to be the 
primary genetic defect in this disorder. The human y-sarcoglycan gene was mapped to 
chromosome 13q12, and deletions that alter its reading frame were identified in three 
families and one of four sporadic cases of SCARMD. These mutations not only affect 
y-sarcoglycan but also disrupt the integrity of the entire sarcoglycan complex. 

T h e  muscular dystrophies are genetically 
heterogeneous (1 ). X-linked recessive mus- 
cular dystrophy, or Duchenne muscular dys- 
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trophy (DMD), is the most common form 
and arises from mutations in the dystrophin 
gene (2). Autosomal inheritance is present 
in a significant percentage of muscular dys- 
trophy cases ( 1 ,  3). In North Africa, the 
incidence of SCARMD [OMIM 253700 
( I ) ] ,  also referred to as limb girdle muscular 
dystrophy (LGMD) 2C (4), accounts for 10 
to 50% of the total muscular dystrophy cases 
15. 6). The earlv ape of onset and severitv of ~, , , - 
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