
include atomistic modeling of actual FLCs, 
as was demonstrated earlier for nematics 
(17). Then the role of explicit chemical 
substitutions in hypothetical mesogens sub- 
jected to V(OO) and V1(RZ)  can be studied 
to develop a set of design rules for optimiz- 
ing spontaneous polarization in FLCs. 
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Imaging the Electron Density in the Highest 
Occupied Molecular Orbital of Glycine 

Y. Zheng, J. J. Neville, C. E. Brion* 

The spherically averaged electron density distribution of the highest occupied molecular 
orbital (HOMO) for the amino acid glycine has been determined by multichannel electron 
momentum spectroscopy. Comparison of the measured HOMO electron momentum 
distribution with near-Hartree-Fock limit and density functional theory (DFT) calculations 
for the Boltzmann-weighted sum of the eight predicted stable conformers indicates that 
electron correlation effects must be included in order to adequately reproduce the ex- 
perimental results for glycine. The best-fitting DFT calculation determined with the Becke- 
Perdew gradient-corrected exchange-correlation functional was used to generate HOMO 
electron density maps for oriented glycine conformers. The result is shown for the most 
stable conformer. 

A detailed knowledge of molecular elec- 
tron density distribution and electron mo- 
tion is necessary to improve understanding 
of molecular recognition and chemical re- 

.2 

activity and to facilitate computer-aided 
molecular design. To  date, molecular mod- 
eling procedures rely almost exclusively on 
total charge distributions obtained from 
molecular ~otent ials .  While detailed infor- 
mation on total charge distributions is 
available from x-ray and electron scattering 
experiments, the frontier orbital theory of 
Fukui (1,  2 )  predicts,that reactivity is in- 
fluenced primarily by the electron density 
distribution in the HOMO. Furthermore, it 
is clear that chemical behavior is influenced 
predominantly by the valence electrons. It 
is therefore highly desirable to obtain accu- 
rate ex~erimental measurements of valence 
orbital electron density distributions. Mea- 
surements of orbital electron momentum 
distributions and thus experimental infor- 
mation on orbital electron density can be 
obtained for atoms and small molecules (3- 
7) by means of electron momentum spec- 
troscopy (EMS). Recent developments in 
multichannel EMS ( 8 ,  9) have provided 
the increased sensitivity necessary to study 
larger molecules of interest in biochemistry 
and molecular biology. Here, we report 
EMS measurements and quantum mechan- 
ical calculations of the HOMO electron 
density for the amino acid glycine. 

Amino acids are of fundamental bio-, 
chemical interest because of their role as 
the basic structural units of proteins. Al- 
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though there is considerable interest in per- 
forming electronic structure calculations on 
proteins, their large molecular size and 
structural comvlexitv restrict the level at 
which conveniionai theoretical methods 
[that is, Hartree-Frock (HF) and configura- 
tion interaction (CI)] can be used in prac- 
tice. Less computationally intensive theo- 
retical methods such as DFT (1 0 )  hold con- 
siderable promise for use with larger biolog- 
ical molecules. It is of key importance to 
first test such methods on smaller svstems. 
for which EMS measurements can be made 
and reasonably high level HF calculations 
of the HOMO electron distribution and 
other properties are still possible. As the 
simplest amino acid, glycine not only has a 
significant role in biological systems but 
also is an im~or tan t  model com~ound in 
biochemistry and therefore an obvious test 
case for theoretical methods. Although gly- 
cine exists as a zwitterion in the solid ~ h a s e  
and aqueous solution, in the gas phase it 
exists as a mixture of neutral conformers 
(1 1-13). Recent theoretical (14-19) and 
experimental (20) studies have considered 
the number, geometry, and relative energies 
of these conformers of the glycine molecule. 

EMS is an electron impact ionization ex- 
~er iment .  in which the kinematics are com- 
pletely determined by detecting the two out- 
going electrons in coincidence (that is, with 
time correlation) after energy and angle se- 
lection (3,  5). The experiment measures 
spherically averaged electron momentum 
distributions for individual (binding energy 
selected) orbitals, that is, orbital imaging in 
the momentum representation ( 3 , 5 ,  7). Ac- 
cording to the plane wave impulse and the 
target HF approximations ( 3 , 5 ,  7), the EMS 
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cross section (momentum distribution) is 
given by 

oms = constant J d n  I +,(p) I ' (1)  

where p is the momentum of the electron 
before ionization from the target, and the 
momentum space-independent particle (or- 
bital) wave function +,(p) is the Fourier 
transform of the more familiar position space 
wave function +,(r). The quantity J" d a  gives 
the spherical average over the random ori- 
entations of the target molecules. In density 
functional theory, the target Kohn-Sham ap- 
proximation (21 ) results in an expression 
similar to Eq. 1, but some accounting of 
electron correlation effects is also included 
through the exchange-correlation potential. 
Through use of these theories, EMS mea- 
surements have provided a powerful test of 

0 1 2 3 

Momentum (au) 

Fig. 1. The experimental momentum distribution 
(e) for the highest occupied molecular orbital of 
glycine compared with theoretical distributions 
(curves 1 to 8), which have been obtained with a 
weighted conformational average. Numbers cor- 
respond to the calculations listed in Table 1. 

ab initio quantum chemical methods (3-5, 
7 , 8 )  and have been useful for the evaluation 
and design of very accurate wave functions 
(basis sets) for small molecules (4, 5, 22) and 
for the study of the methyl inductive effect 
(6). In particular, such studies have shown 
that electron correlation effects are extreme- 
ly important in the HOMO orbital densities 
of small molecules such as water (4, 5 )  and 
ammonia (5), but not for hydrocarbons (5). 
As the application of EMS is extended to 
problems in biochemistry, it is of key impor- 
tance to know whether electron correlation 
effects are im~ortant  in the valence orbital 
electron densities of larger molecules such as 
amino acids. The high sensitivity of EMS 
experiments to the low-momentum region 
means that the method is a particularly sen- 
sitive probe of the chemically reactive, outer 
spatial regions of the orbital electron density 
distribution. These considerations mav also 
have important implications for mode ling^ 
intramolecular hydrogen bonding in biolog- 
ical molecules (4, 5). 

EMS measurements of the HOMO elec- 
tron momentum distribution of gaseous gly- 
cine (Fig. 1) were obtained by means of an 
energy-dispersive multichannel electron mo- 
mentum spectrometer with operation condi- 
tions as described by Zheng et al. (8). The 
experimental momentum distribution was ob- 
tained by recording binding energy spectra at 
a series of 13 relative azimuthal angles and 
summing the data at each angle over the 
binding energy range corresponding to the 
HOMO, as given by photoelectron spectros- 
copy (1 1 ). The sample was vaporized at 165OC 
directly into the high-vacuum interaction re- 
gion of the spectrometer (base pressure, lop7 
torr). The experimental results were com- 
pared with HF calculations that use a series of 
basis sets ranging in quality from minimal to 
near-HF limit, and with large basis set density 
functional calculations using both local (23) 
and nonlocal (24, 25) exchange-correlation 
functionals. The theoretical momentum dis- 
tributions were obtained through use of the 

target HF approximation (5, 7) in the case of 
the HF calculations and the target Kohn- 
Sham approximation (21) in the case of the 
density functional calculations. Calculations 
were done for each of the eight geometry- 
optimized conformers predicted by CsAszAr 
(17) to be minima on the glycine potential 
energy surface. The study by CsgszBr provides 
the most complete post-HF survey of possible 
conformers available and includes a determi- 
nation of the zero point vibrational energies. 
Hu et al. (18) have recently reported single 
and double excitation coupled cluster 
(CCSD) geometry optimization calculations 
for many of the glycine conformers, and a 
comparison of their optimized geometries 
with those reported by CsAszAr for four of the 
lowest energy conformations (designated Ip, 
IIp, IIn, and IIIp by CsAszAr and I, 11, I11 and 
IV by Hu et al.) shows excellent agreement. 
For calculation of the momentum distribu- 
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Fig. 2. Two-dimensional electron density map for 
the HOMO of an oriented glycine molecule in the 
lowest energy conformation (Ip), as calculated with 
the same Kohn-Sham orbital used to obtain mo- 
mentum distribution 8 in Fig. 1 (see also Table 1). 
The electron density in the plane of the heavy-atom 
molecular framework is showrt, with the positions 
of the nuclei comprising this framework indicated 
by their respective chemical symbols. The contour 
lines represent 0.01, 0.03, 0.1, 0.3, I .O, 3.0, 10.0, 
30.0, and 99.0% of the maximum density. 

Table 1. Calculated and experimental properties for glycine. Hartree-Fock glycine ( 7  7). Theoretical values of the dipole moment are for a nonrotating, 
(HF) calculations were done with the program GAUSSIAN92. Density func- nonvibrating molecule. Calculated p,, values are for the Boltzmann-weight- 
tional theory (Dm) calculations were done withthe deMon program (34, 35). ed conformer sum so as to correspond with the experimental value. Numbers 
Total energies and dipole moments are for the lowest energy (Ip) conformer of in the first column correspond to curves 1 to 8 in Fig. 1. 

Calculation Method Basis set [Heavy atom/H] Total energy Dipole moment 
(Hartree) (Debye) PMAX (au) 

'The Vosko, Wilk, and Nusair (23) local exchange-correlation potential is used. tThe Becke exchange (24) and Perdew correlation (25) gradient corrections to the exchange- 
correlation potent~al are used. $Suenram and Lovas (12) determined p,, of conformer Ip to be 1,O ? 0.15 D and p,, # 0, IL, > pb. 
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tions, the individual distributions for the eight 
conformers were summed after being weighted 
according to the relative Boltzmann popula- 
tions of the conformers at 165OC, using the 
relative conformer energies according to the 
final predictions of Csss6r together with zero 
point vibrational energy corrections (1 7, 26). 
The weighting factors were 55% (Ip), 20% 
(IIp), 9% (IIIp), 13% (IVn), 3% (Vn), 0.3% 
(VIP), 0.1% (VIIp), and 0.1% (VIIIn) where 
the conformer notation is that used by Cs&sz&r 
(1 7). The individual conformers have signifi- 
cantly different calculated HOMO momen- 
tum distributions. The resulting conformer- 
weighted theoretical momentum distributions 
(Fig. 1) include folding with the experimental 
momentum resolution (8) through use of the 
Gaussian-weighted planar grid (GW-PG) 
method (27). Details of the various calcula- 
tions and also the total energies and dipole 
moments for the most stable conformer (17) 
and momentum values corresponding to the 
maximum of the weighted average electron 
momentum distributions (pMAX) are shown in 
Table 1. The lower level HF treatments with 
STO-3G, 4-31G, and 6-311G basis sets 
(curves 1, 2, and 3 in Fig. 1) provide rather 
poor descriptions of the experimental result. 
The 6-3 11 + +G** basis set, incorporating 
polarization and diffuse functions, gives an 
improved HF result (curve 4) similar to that 
(curve 5) obtained with the 240-pVTZ basis 
set (28) and to that (curve 6) obtained with 
the considerably larger aug-cc-pVTZ basis set 
(29,30). This result suggests that the HF limit 
has been quite closely approached with calcu- 
lations 4,5, and 6 (see also other properties in 
Table 1). 

Even the better HF calculations (curves 4, 
5, and 6 in Fig. 1) seriously underestimate the 
intensity in the low-momentum region. In 
contrast, DFT with the 240-pVTZ basis set 
and either the Vosko, Wilk, and Nusair 
(VWN) local (23) or the Becke and Perdew 
(BP) nonlocal gradient-corrected (24, 25) 
exchange-correlation functional (curves 7 
and 8, respectively, in Fig. 1) provides a much 
improved description of the momentum dis- 
tribution at lower momentum (<1 atomic 
unit). This improvement can be attributed to 
the inclusion of electron correlation effects 

via the exchange-correlation potential used in 
DFT. Figures 2 and 3 show different represen- 
tations of the position space HOMO electron 
density map for an oriented glycine molecule 
for the conformer that is predicted (17) to 
comprise 55% of the sample at 165°C. These 
maps were calculated with the nonlocal DFT 
(240-pVTZ) treatment, which provides the 
best fit to the experimental momentum dis- 
tribution (Fig. 1). 

Cooper et al. (31-33) have recently cal- 
culated molecular similaritv indices from to- 
tal electron density distributions in momen- 
tum space for possible applications in areas 
such as drug design (31, 32) and the ratio- 
nalization of human immunodeficiency virus 
(HIV) virology data (33). Consideration of 
the electron density in momentum (p) space 
strongly emphasizes the outermost regions of 
the valence electron charge density, in con- 
trast to the commonly used position (r) space 
representation, which weights heavily the 
core (nuclear) region. Using limited basis 
sets, Cooper et a1 (33) have shown that there 
is a high degree of correspondence between 
the half-maximal effective dose (ED,,) clin- 
ical activity of anti-HIV phospholipids and 
theoretical predictions when the densities 
are considered in momentum mace. This 
result can be attributed to the extremely 
high sensitivity of the momentum space rep- 
resentation to the chemically sensitive outer 
spatial (larger r) regions of the charge distri- 
bution, which are of key importance in mo- 
lecular recognition. In other studies of struc- 
ture-reactivitv relations in the context of 
drug design (3 1 ) and molecular similarity 
studies (32), Cooper and Allan suggest that 
it would be interesting and potentially fruit- 
ful if momentum space calculations were 
done on a HOMO/LUMO orbital rather 
than a total density basis. Electron momen- 
tum spectroscopy provides such orbital den- 
sity information directly in momentum 
space, and our experimental results and re- 
lated theoretical investigation~ for glycine 
show that details of the HOMO electron 
density distributions can be obtained for bi- 
ologically important molecules. In particular, 
the need to include electron correlation ef- 
fects in describing the reactive part of the 

Fig. 3. A three-dimensional 
representation of the elec- 
tron density in the molecu- 
lar plane of the HOMO of 
an oriented molecule in the 
lowest energy conforma- 
tion (Ip) of gaseous glycine, 
as calculated with the 
same Kohn-Sham orbital 
used to obtain momentum 
distribution 8 in Fig. 1 (see 
also Table 1). Note that the 
(vertical) relative electron 
density scale is linear. 

electron distribution of the amino acid gly- 
cine has been demonstrated by comparison 
of EMS measurements with density func- 
tional theory calculations for the contribut- 
ing conformers. 
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