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Localization of Protein Implicated in 
Establishment of Cell Type to Sites of 

Asymmetric Division 
Fabrizio Arigoni, Kit Pogliano, Chris D. Webb, 

Patrick Stragier, Richard Losick* 

Asymmetric division in Bacillus subtilis generates progeny cells with dissimilar fates. 
SpollE, a membrane protein required for the establishment of cell type, was shown to 
localize near sites of potential polar division. SpollE initially localizes in a bipolar pattern, 
coalescing at marks in the cell envelope at which asymmetric division can take place. 
Then, during division, SpollE becomes restricted to the polar septum and is lost from the 
distal pole. Thus, when division is complete, SpollE sits at the boundary between the 
progeny from which it dictates cell fate by the activation of a cell-specific transcription 
factor. 

A fundamental challenge 111 develoomen- " 
tal hlology is to understand how cells of 
one type dlfferentiate into other, more 
specialized types of cells ( 1 ) .  O n e  way 
specialization occurs is by asymmetric cell 
division in which a progenitor cell gives 
rise to  two dlssilnilar progeny that follow 
different ~ a t h w a v s  of differentiation. A 
simple system in which the relation he- 
tween cell fate and asymlnetrlc dlvision 
has been investigated is spore forlnatlon in 
Bacillus subtilis (2 ) .  Spore formation in- 
volves an asv~nlnetric cell division in 
which a septunl 1s formed near one pole of 
the developing cell ( the "sporangium"), 
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partitioning ~t into unequal-sized progeny 
called the forespore ( the small cell) and 
the mother cell. Crucial to the estahlish- 
ment of the dissilnllar fates of the progeny 
IS a putative integral ~nenlhrane protein 
(3)  called SpoIIE ( 4 ) ,  whose synthesis 
colnlnences shortly before asymmetric di- 
vision (5) .  

SpoIIE is not needed for the formation 
of the polar septum (6, 7) 'but 1s required 
for the activation in the forespore of a 
transcriptioln factor called aF ( 4 ) .  The  aF 
factor is present in the predivislonal spo- 
ranpiuln but is held in an inactive corn- - 
plex prlor to  septation by the inhlhltory 
protein SpoIIAB (8). After the polar sep- 
tum is formed, uF continues to be held in 
an inactive c o ~ n ~ l e x  in the mother cell, 
while SpoIIE triggers the release of aF 
from SpoIIAB In the forespore. The  mech- 
anism by which SpoIIE activates aF has 
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been unknown until now (9) but is in- 
ferred to involve an additional protein 
(SpoIIAA) to which SpoIIAB binds in 
order to release uF  (4, 8). Freed from 
inhibition in the fores~ore as a result of 
the action of SpoIIE, uF  sets in motion a 
chain of events that determine the subse- 
quent fate of the two progeny cells (2). 

Because of its role in the establishment 
of cell type, we investigated the subcellu- 
lar localization of SpoIIE. Polyclonal an- 
tibodies were raised against the COOH- 
terminal region of SpoIIE (1 0) and used to 
examine the s~a t i a l  distribution of the 
protein by immunofluorescence microsco- 
py ( I  1). Cells were collected at various 
times early after the onset of sporulation, 
fixed, and permeabilized for labeling with 
antibodies. In some sporangia (designated 
class i; Fig. 1A) antibody labeling was 
bi~olar.  with zones of fluorescence (red . , 

color) located near both ends of the cells 
(12). Sporangia with the bipolar pattern 
of SpoIIE immunostaining were at a very 
early stage of development because (as 
revealed by DAPI staining) (13) they 
lacked a condensed forespore chromo- 
some. As sporulation progresses and a po- 
lar septum is formed, one chromosome 
becomes tightly packed into the forespore 
and is recognized as a region of intense 
DAPI staining near one pole of the spo- 
rangium (14). An additional indication 
that class i sporangia were at a very early 
stage was that uF-directed gene expression 
had not yet commenced. This was deter- 
mined by also staining the sporangia, 
which contained lac2 fused to a gene un- 
der the control of uF, with antibodies to 
P-galactosidase (P-Gal) (Fig. lB, repre- 
senting the same field of cells as in Fig. 
1A). The absence of P-Gal staining from 
class i sporangia indicated that little or no 
uF-directed gene expression had occurred. 

Class ii sporangia contained immuno- 
staining of SpoIIE preferentially at one 
pole (Fig. 1, A, C, and D). Class ii spo- 
raneia are more advanced than class i cells - 
because a condensed forespore chromo- 
some was evident (1 3). Also, a low level of 
P-Gal from uF-directed synthesis of the 
enzyme could be detected (seen as white- 
to-pink color in Fig. 1B and, as a result of 
the absence of DAPI fluorescence in this 
photograph, the yellow color in Fig. ID). 
The bipolar pattern (class i) of SpoIIE 
staining was observed with high frequency 
among sporangia that had not yet formed 
a condensed fores~ore chromosome, and 
the forespore-specific pattern (class ii) was 
frequent among sporangia that contained 
a condensed chromosome (Fig. 2). Finally, 
class iii sporangia represented a third, 
more advanced stage of development. In 
these sporangia, little or no SpoIIE could 
be detected at either pole. Rather, class iii 

s~oraneia exhibited a fullv condensed fo- stantial accumulation of B-Gal (ereen- - . - 
respore chromosome (evident from photo- blue color; Fig. 1B). 
graphs of DAPI staining alone) and sub- Thus, SpoIIE localizes near both ends 

Fig. 1. Localization of SpollE in sporangia by fluorescence microscopy (23). (A to D) Immunolocal- 
ization (24) of SpollE (with Cy3-conjugated secondary antibodies) and p-Gal (with fluorescein-conju- 
gated secondary antibodies) produced under the control of uF (25). (A) Doubly exposed micrograph 
showing immunostaining of SpollE (red) and DAPI staining of DNA (blue) (13). (B) Triply exposed 
micrograph of the same field with immunostaining of p-Gal (green-blue). White-to-pink corresponds to 
regions in which SpollE (red) and p-Gal (green-blue) coincide. (C) Doubly exposed micrograph 
showing SpollE (red) and the DAPI-stained DNA (blue) in a pair of sporangia with adjoining mother 
cells. (D) Doubly exposed micrograph of the same field as in (C) showing SpollE (red) and p-Gal (green) 
(22). Yellow color corresponds to regions in which SpollE and p-Gal are nearly coincident. (E and F) 
lmmunolocalization of SpollE (Cy3) and @-Gal (fluorescein) produced under the control of uF in spolllE 
mutant sporangia (26). (E) shows SpollE (red) and the DAPI-stained DNA (blue), and (F) additionally 
shows p-Gal (green) (27). Yellow color occurs where SpollE and p-Gal overlap. (G) lmmunolocalization 
of SpollE (fluorescein) in propidium iodide-stained (red) spolllE mutant sporangia (28). (H to J) 
lmmunolocalization of SpollE (fluorescein) in a disporic mutant (spo1lGAB::erm) (29). (H) Propidium 
iodide-stained DNA (red). (I) Multiply exposed micrograph showing SpollE (green) and DNA (red); 
when the two are in close proximity, yellow is apparent. (J) SpollE alone (green). (K to M) Phase and 
fluorescence micrographs of living cells producing SpollE-GFP (18) at hour 2 of sporulation (30). 
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of the cell very early in development, 
probably before a septum has formed. 
Then, when the septum forms and the 
chromosomes segregate, SpoIIE disappears 
from the forespore-distal pole but remains 
localized near the forespore pole (15). Fi- 
nally, after a chromosome is fully packaged 
into the forespore and uF is maximally 
active, SpoIIE disappears entirely from the 
sporangium. 

A brighter image was obtained when 
immunostaining was carried out in a mu- 
tant (spoIIIE) defective in chromosome 
segregation in which class i sporangia per- 
sisted longer (Fig. 1E). The spoIIIE gene 
product has been implicated in the process 
of translocating one chromosome into the 
forespore (16). In studies with the spoIlIE 
mutant, it was apparent that SpoIIE is not 
located at the extreme ends of sporangia 
but instead is slightly internal from the 
~o les .  at or near the sites of asvmmetric . . 
septation. This result was seen in mutant 
sporangia that were additionally stained 
for P-Gal produced under the control of 
uF. Fluorescence from immunostaining of 
P-Gal (green color in Fig. IF, representing 
the same field as in Fig. 1E) in some of the 
sporangia (identified with arrows) extend- 
ed beyond the region of SpoIIE immuno- 
staining (red color) toward the cell pole. 
The overlap in the staining pattern of 
SpoIIE and P-Gal produced a yellow color. 
Furthermore, in some of the sporangia 
(identified with arrows) stained both for 
DNA (red color in Fig. 1G) and SpoIIE 
(green color), fluorescence from DNA ex- 
tended out bevond the zone of SDOIIE 
immunostaining. Similar results were ob- 
tained with wild-type sporangia. Thus, 
SpoIIE coalesces at sites near to, but not at 
the ends of, cells. We sometimes observed 

SpoIIE immunostaining in the shape of a 
ring in the spoIIIE mutant (open triangle; 
Fig. 1G). This finding suggests that SpoIIE 
assembles into a collar-like structure on 
the inside surface of the cell at or near 
sites of potential septum formation (1 7). 

We also determined the subcellular lo- 
calization of SDOIIE with an additional 
approach. We constructed a strain produc- 
ing a fusion protein of SpoIIE with green 
fluorescent protein (GFP) of Aequorea wic- 
toria (18). GFP autocatalytically generates 
a fluorophore that exhibits green fluores- 
cence in unfixed, living cells (19). Spo- 
rangia producing the SpoIIE-GFP fusion 
protein displayed fluorescence patterns 
(Fie. 1. K to M) similar to that observed . - .  
with immunostaining. Furthermore, phase 
contrast and fluorescence microscopy 
demonstrated that the SpoIIE-GFP fusion 
was localized in a sharp zone close to, but 
set back from, the poles of the sporangia 
(Fig. 1, L and M). 

Normallv. asvmmetric division occurs ,. , 
at only one pole. Nonetheless, both poles 
are capable of undergoing division, as in- 
ferred from the existence of mutants that 
divide at both ends of the s~oraneium (7). - . , 
Bipolar division in these mutants produces 
aberrant, "disporic" sporangia with chro- 
mosome-containing forespores in which 
uF is active (20) at both poles, and pro- 
duces an empty mother cell in the middle 
(Fig. 3). We examined the localization of 
SpoIIE in a disporic mutant (spoIIC) (Fig. 
1, H to J ,  representing the same field of 
cells). A bipolar pattern of SpoIIE immu- 
nostaining was observed in class i sporang- 
ia. A t  later stages of development, a class 
of sporangia (designated class iv) was ob- 
served with strong immunostaining at the 
forespore-distal pole. In these class iv spo- 

Fig. 2. Tabulation of SpollE immunostaining pattern in wild- Chromosome pattern 
type and in a disporic mutant. lmmunostaining and DNA 
staining were done as described in Fig. 1 legend. Micro- S~OIIE  (G) 
graphs of the stained sporangia were scored according to pattern 
the pattern of chromosome condensation and the pattern of Wild type 
SpollE localization. The percentages indicate the percent- 68% 
age of wild-type and disporic (spo1lGAB::em) mutant spo- blass 12% 

rangia exhibiting (right-hand column of percentages) or not 0 86% 
exhibiting (left-hand column) a condensed forespore chro- 32% class ii 
mosorne with the indicated pattem of SpollE immunostain- 2% 
ing. The figure distinguishes two kinds of SpollE patterns: 
strong staining at both poles and preferential staining at one Disporic mutant 
pole. [Note that for sporangia without a condensed fore- 83% 

class i 16% spore chromosome (left-hand column), tbe future forespore 
pole could not be distinguished from the future distal pole.] a 8% 
The percentages are based on 225 and 21 8 wild-type spo- 1 7% 
rangia with or without a condensed chromosome, respec- 76% 

tively, and 61 and 77 mutant sporangia with or without a class iv 

condensed chromosome, respectively. Not included are wild-type sporangia that had reached the stage 
of development (when uF was fully active) at which little or no immunostaining could be detected. Also not 
included are disporic mutant sporangia that had reached the stage at which condensed, forespore 
chromosomes were present at both poles. Such sporangia in which the mutant phenotype was fully 
manifest (corresponding to class v in the text) displayed little immunostaining or weak staining, often 
preferentially at one pole. 

rangia, a condensed chromosome was vis- 
ible at one pole .of the cell (Fig. lH) ,  and 
a strong SpoIIE signal was detected at the 
opposite pole (Fig. 1, I and J ) ,  the site at 
which a second septum was presumably 
forming. Such class iv sporangia were 
abundant (76%; Fig. 2) among mutant 
sporangia at the stage of a condensed fo- 
respore chromosome but uncommon (2%; 
Fig. 2) among wild-type sporangia. Later 
in development, when the disporic mutant 
phenotype was fully manifest (class v spo- 
rangia), condensed chromosomes were vis- 
ible at both poles (Fig. lH),  but relatively 
little SpoIIE could be detected at either 
end of the sporangia (Fig. 1, I and J). 
Therefore, in disporic sporangia, SpoIIE 
localizes near both poles during early stag- 
es of development, persists near each di- 
vision site until a septum is formed at each 
pole, and finally disappears entirely from 
the sporangia (Fig. 3). 

These observations suggest that the cell 
envelope contains "marks" at medial and 

u 

. . 
Class i 

. . 

Wild-type 
pathway / V p o r i c  pathway 

Class i~ Class IV 

i- 

Class iii Class v 

Fig. 3. Model for the subcellular localization of 
the cell-type determining protein SpollE in wild- 
type and disporic mutant bacteria. The cartoons 
represent cells at early stages of sporulation in 
wild-type and disporic mutant bacteria. The 
wavy horizontal lines indicate chromosomes; the 
chromosomes are extended when in the predi- 
visional sporangium or the mother cell and com- 
pact when present in the forespore. The arrow- 
heads in the top cartoon signify hypothetical 
marks for potential polar division. The incom- 
plete, shaded disks represent still-forming sep- 
ta, and the complete, shaded disks represent 
completed septa. The dotted oval lines repre- 
sent SpollE, with the thin dotted lines indicating 
the presence of SpollE in low abundance and 
the dark dotted line indicating high abundance. 
In the wild-type pathway (on the left) a division 
septum is formed at only one pole, whereas in 
the disporic pathway of mutant bacteria, septa 
for m successively at both poles. 
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polar. positions, and that at the start of 
sporulation the medial mark is masked or 
destroyed whereas marks at both poles are 
created or rendered accessible to the septa-
tion machinery of the cell (Fig. 3). The 
finding that SpoIIE initially localizes in the 
vicinity of both sites of potential polar di­
vision suggests that SpoIIE recognizes the 
hypothetical polar marks (Fig. 3) and hence 
could serve as a tool for verifying their 
existence and determining their molecular 
nature. 

Finally, the finding that SpoIIE comes 
to be sequestered at the position of the 
polar septum indicates that SpoIIE sits at 
the boundary between the small cell in 
which aF is active and the large cell in 
which it is inactive. A simple model for 
how the septal location of SpoIIE could 
contribute to the selective activation of aF 

in the forespore, and the assignment of a 
biochemical function to SpoIIE, are pre­
sented in the accompanying report (9). 
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