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Relaxation of Arterial Smooth Muscle
by Calcium Sparks

M. T. Nelson, H. Cheng, M. Rubart, L. F. Santana, A. D. Bonev,
H. J. Knot, W. J. Lederer*

Local increases in intracellular calcium ion concentration ({Ca2*],) resulting from activation
of the ryanodine-sensitive calcium-release channel in the sarcoplasmic reticulum (SR) of
smooth muscle cause arterial dilation. Ryanodine-sensitive, spontaneous local increases
in [Ca2*), (Ca2* sparks) from the SR were observed just under the surface membrane of
single smooth muscle cells from myogenic cerebral arteries. Ryanodine and thapsigargin
inhibited Ca2* sparks and Ca2*-dependent potassium (K,) currents, suggesting that
Ca?* sparks activate K, channels. Furthermore, K, channels activated by Ca?* sparks
appeared to hyperpolarize and dilate pressurized myogenic arteries because ryanodine
and thapsigargin depolarized and constricted these arteries to an extent similar to that
produced by blockers of K, channels . Ca?* sparks indirectly cause vasodilation through
activation of K, channels, but have little direct effect on spatially averaged [Ca2*],, which

regulates contraction.

Myogenic arteries control blood flow in
the brain and respond to changes in intra-
vascular pressure. Increased intravascular
pressure causes a graded membrane poten-
tial depolarization of smooth muscle cells
and arterial constriction (myogenic tone)
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(I-3). Small, pressurized cerebral arteries
dilate when the membrane potential of the
smooth muscle cells is made more negative
over the physiological range of membrane
potentials (=60 to —30 mV), because
steady Ca’-influx through dihydropyri-
dine-sensitive, voltage-dependent Ca?™"
channels declines (2—4). Ca?* entry at
physiological membrane potentials affects
spatially averaged [Ca® "], in arterial smooth
muscle (3, 4). Although ryanodine-sensi-
tive Ca’ " -release channels directly contrib-
ute to the global [Ca?*], transient and con-
traction in cardiac muscle (5), their func-
tional role in smooth muscle has not been
established (4, 6, 7). We monitored ele-
SCIENCE
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mentary ryanodine-sensitive Ca?*-release
events (Ca’™ sparks) from smooth muscle
SR by measuring rapid local changes in
[Ca%*], in smooth muscle cells isolated from
resistance-sized cerebral arteries. We pro-

vide evidence that ryanodine-sensitive
Ca’*-release channels in smooth muscle
SR, unlike their counterparts in cardiac and
skeletal muscle, have a central role in lim-
iting muscle contraction by activating K,
channels.

Single smooth muscle cells were isolated
enzymatically from myogenic cerebral (100-
to 150-pm in diameter posterior and middle
cerebral) arteries from rat (8). We used a
laser scanning confocal microscope and the
fluorescent Ca?* indicator fluo-3 (9) to
detect Ca®* sparks in single cells bathed in
physiological salt solution (Figs. 1 and 2).
The mean rise-time and half-time of decay
of Ca?* sparks were 20.2 = 2.3 ms and 48.0
+ 2.6 ms (n = 11), respectively (Fig. 1).
The mean peak [Ca?*], during the Ca’*
spark was 303 + 27 nM (assuming 100 nM
resting Ca?*) (Fig. 1) (10). The mean
spread of the spark at the peak was 2.38 *
0.14 pm (n = 11) (Fig. 1) (10), correspond-
ing to 0.8% of the surface area of the cell
membrane (11).

Ryanodine, which inhibits SR Ca?*-re-
lease channels at micromolar concentrations
(5, 6), blocked Ca** sparks in smooth mus-
cle cells (Fig. 2B). Ca®* sparks were not
observed in cells exposed to 10 wM ryanod-
ine and the Ca?* channel agonist Bay K
8644, whereas 88% of cells treated with Bay
K 8644 alone had Ca®* sparks. Ca®™ sparks
were not observed in cells exposed to thap-
sigargin (1 uM), which inhibits Ca?* uptake
into the SR by the Ca?*-ATPase (12). Ap-
plication of cadmium (200 pM), which im-
mediately blocks voltage-dependent Ca?*
channels, did not immediately block Ca?*
sparks in our cells (n = 7), a finding similar
to that observed in quiescent heart muscle
cells (5). However, prolonged exposure to
Bay K 8644 increased Ca?*-spark occur-
rence (Fig. 2B). The majority of Ca?* sparks
(59%) arose close to the sarcolemmal surfac-
es (within 1 pm) of the smooth muscle cells .
(Fig. 2C). The Ca?* sparks that were detect-
ed in the middle of the line-scan may still
have arisen at the sarcolemmal surface be-
cause smooth muscle cells hayve infoldings of
the surface membranes (caveolae). These re-
sults suggest that most Ca?* sparks in
smooth muscle cells from resistance-sized ce-
rebral arteries result from the opening of
ryanodine-sensitive Ca’*-release channels
in SR just under the cell membrane.

The proximity of the Ca?* sparks to the
cell surface raises the possibility that the
Ca’" spark serves as an intracellular signal
to the sarcolemmal membrane. Ca?*-acti-
vated K* (K,) channels that exist in this
membrane (2, 3) should be activated by the
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local increase in [Ca?*], produced by the
Ca?™ sparks. To examine this possibility, we
used the perforated-patch method to mea-
sure membrane currents in intact single
cells (13). The membrane potential was
held at —40 or —30 mV, similar to that of

smooth muscle cells in the intact pressur-
ized artery and in freshly dissociated smooth
muscle cells (1-3). Outward current tran-
sients were observed (Figs. 1 to 3) with a
time course similar to that of the Ca**
spark and were completely inhibited by the

application of ryanodine (10 pM) (n = 6)
(Fig. 3A) or thapsigargin (100 nM) (n = 3)
(Fig. 3B), suggesting that they were activat-
ed by the local [Ca?™], increase produced by
individual Ca?* sparks. Tetraethylammoni-
um ions (TEA*) (1 mM) (Fig. 3C) and
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Fig. 1. Spatial-temporal characteristics of a Ca®* spark in a smooth muscle
cell from a rat posterior cerebral artery. (A) Confocal line-scan image of a
fluo-3-loaded cerebral artery smooth muscle cell, with the time course indi-
cated below. The fluorescence time course of the Ca?*-spark was averaged
over the region indicated by the bar. Bottom trace shows an example of a
spontaneous transient outward current (STOC) from a different cell (at —40
mV) (Fig. 3). Each line-scan image is a plot of fluorescence along a scanned
line (that is, position) on the ordinate versus time (on the abscissa) (5). The
line-scan image duration was 1536 ms, and each line was 6 ms. (B) Spatial-
temporal characteristics of the spark shown in (A). (Upper panels) Spatial

Fig. 2. Calcium sparks in single smooth muscle
cells isolated from myogenic cerebral arteries: In-
hibition of Ca?* sparks by ryanodine and thapsi-
gargin and localization next to the surface mem-
brane. (A) Line-scan image illustrating two sparks
at the edge, with the time course of the two sparks
and an example of two STOCs (from a different
cell, at —40 mV) above the image. Bar on line-
scan image, 1.5 um. (B) Percentage of cells ex-
hibiting one or more sparks during 30-s scanning
with Bay K 8644 (500 nM), thapsigargin (Thaps; 1
uM) + Bay K, and ryanodine (Ry; 10 pM) + BayK.  FIF,
The cells were incubated with each drug for at
least 10 min before being examined for sparks.
Each cell was scanned for a average total time of
30 s. Longer scanning resulted in bleaching of the
dye. Assuming that 1% of the cell volume was
scanned for 30 s and a spark frequency of 1/s (on
the basis of STOC measurements), a spark should
have been observed in about 30% of the control
cells. The total number of cells examined under
each condition is indicated above each bar. (C) il
Frequency of sparks as a function of distance

from edge of the cell. The edges of the cells cor-

respond to the upper and lower edges of the line-

scan image.
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distribution of Ca2* fit by a Gaussian (solid line), relative to the initiation point
of the spark. Shown are the spatial distributions at the first indication of an
increase in Ca?* (left), at the peak Ca?* (middle), and 66 ms later (right). The
full width at half-maximal [Ca?*] at the three time points of the spark life cycle
were 1.84, 2.65, and 4.99 pm. (Lower panels) Corresponding estimated
spread of a spark by rotation of the fit Gaussian 360°. Bar, 3 pm. Single
smooth muscle cells were isolated enzymatically from 100-pum-diameter myo-
genic posterior cerebral arteries from rat as described (8). Bath solution: 6 mM
KClI, 134 mM NaCl, 1 mM MgCl,, 2 mM CaCl,, 10 mM Hepes, and 10 mM
glucose (pH 7.4) at room temperature.
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iberiotoxin (100 nM) (Fig. 3D) completely
blocked the currents, confirming the identi-
fication of the current source as K, chan-
nels (2, 3, 14). Ryanodine-sensitive, sponta-
neous transient outward currents (STOCs)
through K, channels have been observed
in a number of other types of smooth muscle
(15, 16). At —40 mV, the STOCs we mea-
sured had a mean amplitude of 21.5 * 6.4
pA (n = 7), a mean duration of 64.9 = 7.9
ms, a mean rise time of 17.1 = 1.6 ms, and
a mean frequency of 1.28 * 0.42 Hz (n = 6)
in intact quiescent cells. Thus, the kinetics

A Ryanodine (10 uM)

I ||I||"| ““'I 2 min |40pa

T \/\\
J\_A,_.A}\_._A_J\._

100 ms
B Thapsigargin (100 nM)
10s 10pA
C
TEA (1 mM)
0.2 1.0
] L]
I i i 1 min |20 PA
D
Iberiotoxin (100 nM)

bl 1

Fig. 3. Inhibition of spontaneous transient out-
ward currents by ryanodine, thapsigargin, TEA*,
and iberiotoxin. (A) Ryanodine (10 wM) block of
STOCs. (Below: expanded time course before,
shortly after, and during addition of ryanodine be-
fore cessation of STOCs.) Ryanodine has no di-
rect effect on K, channels [NP_ (ryanodine)/NP
(control) = 0.97 * 0.02 (SE; n = 3)], and unitary
currents at 0 mV were 5.94 * 0.3 pA (control) and
5.71 = 0.34 pA (ryanodine). (B) Thapsigargin (100
nM) block of STOCS. Thapsigargin has no direct
effect on K, channels [NP (thapsigargin)/NP,
(control) = 0.928 * 0.18 (SE; n = 4)], and unitary
currents at 0 mV were 6.1 + 0.2 pA (control) and
6.1 = 0.3 pA (thapsigargin). (C) Tetraethylammo-
nium (TEA*) block of STOCs. TEA* at 0.2 mM
reduced STOC amplitudes by 50%, which is the
same as the concentration of TEA* required to
inhibit single K, channels by 50% (74). (D) |berio-
toxin (100 nM) block of STOCs. Whole-cell cur-
rents in single smooth muscle cells isolated from
myogenic cerebral arteries of rat were measured
with the perforated-patch configuration of the
whole-cell recording technique. Bath solution: 6
mM KCI, 134 mM NaCl, 1 mM MgCl,, 2 mM
CaCl,, 10 mM Hepes, 10 mM glucose (pH 7.4);
pipette solution: 30 mM KClI, 110 mM potassium
aspartate, 10 mM NaCl, 1 mM MgCl,, 50 pM
EGTA, amphotericin (200 mg/ml) (pH 7.2) at room
temperature.

10s |20pA

of the STOCs were similar to those of the
Ca’* sparks. Ryanodine appeared not to
inhibit STOCs by blocking K., channels,
because neither ryanodine (10 wM) nor
thapsigargin (1 uM) decreased the open-
state probability or unitary current of single
K, channels in excised patches (Fig. 3 leg-
end). The minimum number of K, chan-
nels activated during a STOC can be esti-
mated by dividing the mean STOC ampli-
tude (21.5 pA) at —40 mV by the mean

&2 REPORTS

single-channel current (1.6 * 0.1 pA;n =
3) (17). The results support the idea that a
single ryanodine-sensitive Ca®* spark from
the SR activates at least 13 K, channels to
produce a single STOC.

It would thus be expected that Ca?*
sparks, by activating K., channels, would
hyperpolarize the membrane potential of
myogenic cerebral arteries and so result in
vasodilation (2, 3, 16, 18). The myogenic
response to an increase in intravascular

A
IbTx (100 nM) [D ]
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Fig. 4. Depolarization and constriction of rat myogenic cerebral arteries with tone by inhibitors of K,
channels (iberiotoxin) (A) and Ca2* sparks [ryanodine (B) and thapsigargin (C)]. Cerebral arterial pressure
was 60 mm Hg in all experiments. Iberiotoxin alone depolarizes and constricts. Ryanodine (10 uM)
depolarizes and constricts, and addition of iberiotoxin (arrow) had no effect on membrane potential and
diameter in the presence of ryanodine (n = 5). Thapsigargin (100 nM) depolarizes and constricts, but
iberiotoxin (100 nM) was without effect in the presence of thapsigargin. The mean diameter of the arteries
at 60 mm Hg dilated with 100 nM nisoldipine was 228 *+ 43 pm (n = 17). The diameter of the pressurized
arteries was measured by a video image analyzer (Living Systems Instruments, Burlington, Vermont), and
the membrane potential was measured with conventional microelectrodes as described (2). Bath solu-
tion: 119 mM NaCl, 4.7 mM KCl, 24 mM NaHCO;, 1.2 mM KH,PO,, 1.6 mM CaCl,, 1.2 mM MgSO,,
0.023 mM EDTA, 11 mM glucose (pH 7.4) with continuous bubbling with 95% 0,-5% CO, at 37°C. The
diameter and membrane potential measurements were made in different arteries. (D) Proposed model for
the roles of K, channels and ryanodine-sensitive Ca2*-release channels in the SR (Ca2* sparks) in the
regulation of arterial tone. In this model, Ca?* sparks have a key role in the negative-feedback regulation
of arterial tone through activation of K, channels (right limb of diagram in red). Intravascular pressure
causes a maintained membrane potential depolarization and constriction (myogenic tone) of small
myogenic cerebral arteries (7-3). Myogenic tone is blocked by the removal of external Ca2*, voltage-
dependent Ca?*channel blockers, or membrane hyperpolarization (7-3). Activation of Ca2* channels
increases Ca?* entry and spatially averaged Ca2* in the smooth muscle (3, 22, 29). This small increase
in spatially averaged Ca?* produces a steep increase of force (22) (left limb of diagram in blue), which
would result in an increase of SR Ca?* content. This should increase Ca?* spark frequency and amplitude
and thereby activate K, channels (23). Other important elements in the control of arterial tone not shown
include inositol trisphosphate (IP,)-induced Ca2* release, Ca2* extrusion and uptake mechanisms, and
mechanisms to change Ca?* sensitivity (7). This model also suggests a mechanism by which vasodilators
and vasoconstrictors could regulate arterial tone through modulation of Ca2* spark frequency and
amplitude.
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pressure from 10 mm Hg to 60 to 80 mm Hg
involves the depolarization of the smooth
muscle membrane potential from about
—60 to about —40 mV, the opening of
voltage-dependent Ca?* channels, in-
creased [Ca’*], and the consequent con-
striction of the vessel by about 30 to 40%
(1-3,7,19). Blockers of K, channels (such
as charybdotoxin and iberiotoxin) depolar-
ize the membrane potential of smooth mus-
cle cells by 7 to 9 mV and constrict myo-
genic pressurized cerebral arteries by about
40% (2) (Fig. 4A). The mean membrane
potential at a pressure of 60 mm Hg was
—439 = 1.4 mV (n = 12). Iberiotoxin
caused the membrane potential to depolar-
ize by 8.6 = 2.3 mV (n = 3) at 60 mm Hg
and 9 = 2 mV at 80 mm Hg (n = 6) and
decreased arterial diameter by 41 = 9% (n
= 6) (2).

If Ca’* sparks are major activators of
K, channels in pressurized cerebral arter-
ies with tone, then inhibitors of Ca®*
release from the SR (ryanodine and thap-
sigargin) and blockers of K., channels
should depolarize and constrict pressurized
cerebral arteries to a similar extent. In the
presence of ryanodine and thapsigargin,
iberiotoxin should have little effect on
membrane potential and diameter, be-
cause the localized increases in [Ca?™],
(that is, ‘Ca?" sparks) that activate K,
channels would be eliminated. Ryanodine
(10 wM), which blocks the SR Ca’"-
release channel, depolarized pressurized
(60 mm Hg) posterior cerebral arteries
from —43.9 mV to —36.6 = 0.8 mV (n =
6), or by 7.3 mV, and constricted these
arteries from 121 = 12 pm to 81 = 7 wm
(n = 6), or by 33% (Fig. 4B). In contrast
to the depolarization and constriction of
cerebral arteries caused by iberiotoxin
alone (2), this K., channel blocker had
no effect on membrane potential or diam-
eter after application of ryanodine (n = 5)
(Fig. 4B) (20). Similarly, after thapsigar-
gin had been applied [to block SR Ca-
ATPase (12)], the addition of iberiotoxin
did not affect membrane potential or di-
ameter (Fig. 4C). Thapsigargin (100 nM)
alone depolarized and constricted the
pressurized (60 mm Hg) cerebral arteries
by 6.9 = 1.4 mV (n = 4) and from 122
+*13mV{in=5t9% =12 mV (n =
4), respectively (n = 3) (Fig. 4C). Fur-
thermore, the effects of thapsigargin were
tested in arteries denuded of the endothe-
lium to eliminate any possible complica-
tions from alterations in nitric oxide re-
lease (21). Thapsigargin also constricted
these pressurized cerebral arteries from 95
* 14 wm to 62 = 10 wm (n = 3), or by
35%. Another inhibitor of the SR Ca-
ATPase, cyclopiazonic acid (10 uM), also
constricted pressurized cerebral arteries
(from 123 £ 10 pm to 77 £ 3 pm) (n =
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3). These results suggest that blockers of
Ca?* sparks depolarize and constrict myo-
genic cerebral arteries by inhibiting K.,
channels.

An increase in global [Ca?™], caused by
raised intravascular pressure is due to

Ca?* influx through voltage-sensitive
Ca?" channels and results in an increase
in force generation (7, 22) by means of
myosin light chain kinase activated by
Ca’"-calmodulin (Fig. 4D). This modest
increase in [Ca?"], (compared with the
large local increase in [Ca’*] produced by
a Ca?™ spark) has little direct effect on
K, channels (17) but should produce an
increase in SR Ca?* content and in Ca?™-
spark amplitude and frequency (23). Ca®*
sparks increase local [Ca?"] sufficiently to
activate K, channels, which hyperpolar-
ize the cell. Ca?* sparks could also affect
other types of Ca’*-sensitive processes
(including ion channels) (24). Because
the Ca?* sparks are highly localized and
occur at a low rate (about 1 per second per
cell as inferred from the STOC frequen-
cy), they have little effect on spatially
averaged Ca’?* within a cell (4, 25) and
therefore do not cause contraction. Ry-
anodine-sensitive Ca?* sparks occurred
primarily next to the surface membrane,
consistent with previous studies indicating
that much of the SR in smooth muscle is
adjacent to the sarcolemmal membrane
(7, 26, 27). Therefore, localized large in-
creases in [Ca?*] produced by Ca?™ sparks
can increase K, channel activity (17)
and thereby hyperpolarize and relax small
myogenic cerebral arteries (2, 3) (Fig.
4D). Regulation of the Ca?* spark fre-
quency is another means to control arte-
rial diameter and presumably will depend
on factors that regulate the opening rate of
the ryanodine receptors (SR Ca?*-release
channels), such as the phosphorylation
state and [Mg?*].

Blocking Ca?* sparks or K, channels
in pressurized, myogenic arteries would
then cause membrane depolarization and
vasoconstriction (16, 27) (Fig. 4). The
lack of effect of iberiotoxin in the pres-
ence of ryanodine or thapsigargin (that is,
when Ca?* sparks are blocked) (Fig. 4, B
and C) suggests that average cytoplasmic
Ca’?" in the absence of Ca®* sparks does
not cause sufficient activation of K,
channels to regulate smooth muscle mem-
brane potential (Fig. 4D). However, in-
hibitors of voltage-dependent Ca?* chan-
nels decrease average [Ca?"], and relax
myogenic cerebral and skeletal muscle ar-
teries in the presence of ryanodine (28).
These findings indicate that Ca’* entry
can influence spatially averaged [Ca®*],
which in turn regulates contraction (Fig.
4D). In conclusion, we propose that the
ryanodine-sensitive Ca’*-release channel
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has a key function in controlling the di-
ameter of small myogenic arteries through
the regulation of K, channels. These re-
sults suggest a mechanism for control of
vasodilation and constriction through
modulation of the amplitude and frequen-
cy of Ca?* sparks.
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Localization of Protein Implicated in
Establishment of Cell Type to Sites of
Asymmetric Division

Fabrizio Arigoni, Kit Pogliano, Chris D. Webb,
Patrick Stragier, Richard Losick*

Asymmetric division in Bacillus subtilis generates progeny cells with dissimilar fates.
SpollE, a membrane protein required for the establishment of cell type, was shown to
localize near sites of potential polar division. SpollE initially localizes in a bipolar pattern,
coalescing at marks in the cell envelope at which asymmetric division can take place.
Then, during division, SpollE becomes restricted to the polar septum and is lost from the
distal pole. Thus, when division is complete, SpollE sits at the boundary between the
progeny from which it dictates cell fate by the activation of a cell-specific transcription

factor.

A fundamental challenge in developmen-
tal biology is to understand how cells of
one type differentiate into other, more
specialized types of cells (I). One way
specialization occurs is by asymmetric cell
division in which.a progenitor cell gives
rise to two dissimilar progeny that follow
different pathways of differentiation. A
simple system in which the relation be-
tween cell fate and asymmetric division
has been investigated is spore formation in
Bacillus subtilis (2). Spore formation in-
volves an asymmetric cell division in
which a septum is formed near one pole of
the developing cell (the “sporangium”),
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partitioning it into unequal-sized progeny

called the forespore (the small cell) and
the mother cell. Crucial to the establish-
ment of the dissimilar fates of the progeny
is a putative integral membrane protein
(3) called SpollE (4), whose synthesis
commences shortly before asymmetric di-
vision (5).

SpollE is not needed for the formation
of the polar septum (6, 7) 'but is required
for the activation in the forespore of a
transcription factor called of (4). The of
factor is present in the predivisional spo-
rangium but is held in an inactive com-
plex prior to septation by the inhibitory
protein SpollAB (8). After the polar sep-
tum is formed, oF continues to be held in
an inactive complex in the mother cell,
while SpollE triggers the release of of
from SpollAB in the forespore. The mech-
anism by which SpollE activates of has
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