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T Cell Awareness of Paternal
Alloantigens During Pregnancy

Anna Tafuri, Judith Alferink, Peter Mdller,
Gunter J. Hammerling, Bernd Arnold*

During pregnancy a semiallogeneic fetus survives despite the presence of maternal T cells

specific for paternally inherited histocompa

tibility antigens. A mouse transgenic fora T

cell receptor recognizing the major histocompatibility (MHC) antigen H-2KP was used to
follow the fate of T cells reactive to paternal alloantigens. In contrast to syngeneic and
third-party allogeneic pregnancies, mice bearing a KP-positive conceptus had reduced
numbers of KP-reactive T cells and accepted K°-positive tumor grafts. T cell phenotype
and responsiveness were restored after delivery. Thus, during pregnancy maternal T cells
acquire a transient state of tolerance specific for paternal alloantigens.

In outbred species, inheritance of paternal
histocompatibility antigens by the embryo
results in genetic mismatches to the mother.
The semiallogeneic fetus is in direct physical
contact with uterine and blood-borne cells
of the mother, and fetal rejection by the
maternal immune system is prevented by
mechanisms as yet undefined (1). In mice,
midgestational placenta expresses paternal
MHC antigens of the K and D loci (1, 2);
when grafted into maternal-strain recipients,
it is rejected and induces sensitization to
paternal alloantigens (3). However, neither
ignorance nor tolerance of maternal T cells
to paternal alloantigens has been conclusive-
ly shown. Impairment of T cell responses has
been observed, but its selectivity to paternal
alloantigens remains controversial (1, 4, 5).
Midpregnant CBA mice, which are inbred,
have unaltered expression of T cell receptor

(TCR), CD4, and CD8 (6). However, phe-
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notypic changes may go undetected because
T cells specific for paternal alloantigens have
low frequency in a normal T cell repertoire.
Here, we used a TCR transgenic mouse mod-
el (Des-TCR) harboring a T cell repertoire
skewed toward the paternal alloantigen
H-2K* (7) to take advantage of the high
frequency of allospecific cytotoxic T cells as
well as the ease of monitoring the transgenic
TCR with clonotype-specific antibodies.
Virgin H-2% Des-TCR transgenic fe-
males were mated with H-2® C57BL/6
males, and KP-specific T cells were pheno-
typically characterized during pregnancy.
Nonspecific gestational effects (8) were
controlled for by syngeneic and third-party
allogeneic matings with H-2% CBA or H-2°
ASW males (9), respectively. Midpregnant
Des-TCR mice bearing a K>-positive con-
ceptus had reduced numbers of T cells with
high expression of the clonotype (Fig. 1B,
left) and six to nine times more clonotype-
positive cells devoid of CD4 and CDS8 (Fig.
1B, right) when compared to the results
obtained for H-2¥ syngeneic (Fig. 1C) and
H-2¢ third-party allogeneic (Fig. 1D) preg-
nancies. Therefore, maternal T cells specif-
ically recognize paternal alloantigens.

ety



To determine whether T cell phenotypic
changes in response to paternal K persist
after delivery, we mated thymectomized
H-2% Des-TCR females with H-2" C57BL/6
males. During midpregnancy, clonotype-
positive T cells underwent phenotypic al-
terations (Fig. 2B) similar to those of non-
thymectomized mice (Fig. 1B). After deliv-
ery, the expression of the clonotype, CD4,
and CD8 in KP-specific T cells (Fig. 2C) did
not differ from that of control mice (Fig.

Fig. 1. Midgestational changes of
Kb-specific T cell phenotype in re-

2A). Therefore, the alterations of mature
peripheral T cells occur extrathymically
and are reversed after delivery in the ab-
sence of a new thymic T cell input (10).
To dissect the role of B cells and CD4*
T cells during pregnancy, we used Des-TCR
SCID (severe combined immunodeficiency
disease) mice. SCID mice are unable to
autonomously rearrange immunoglobulin
(Ig) and TCR genes but normally express a
rearranged transgenic TCR (11). The pe-
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ripheral lymphoid organs of H-2¢*% Des-
TCR SCID mice were devoid of B cells, T
cells expressing TCRs other than the trans-
genic clonotype, and CD4*Des™ T cells
(Fig. 3B); this observation supports the hy-
pothesis that the expression of a second
TCR is required for positive selection of
CD4*Des™ T cells (12). When mated with
C57BL/6 males, H-29%% Des-TCR SCID
mice gave birth to healthy litters of com-
parable size to those from syngeneic mat-
ings. Clonotype expression was reduced in
H-2" allogeneic pregnancies (Fig. 3D) in
comparison with syngeneic pregnancies
(Fig. 3E). Therefore, the encounter with
paternal K® is per se sufficient to perturb
the phenotype of CD8*Des* T cells,
which rules out the hypotheses that fetal
rejection is prevented by alloantibodies
masking paternal MHC class I antigens on
fetal target cells (13) and that CD4* T
cells are of critical importance for success-
ful pregnancies in this model. Production
of cytokines such as transforming growth
factor—B2 (14), interleukin (IL)-4, and IL-
10 at the fetomaternal interface may in-
duce Tyy2-type CD4™" T cells, thereby im-
proving fetal survival (15). In Des-TCR
SCID mice, CD8* T cells may have a
similar function, as CD8" T cells report-
edly produce heterogeneous patterns of
cytokines (16). To assess whether placen-
tal sequestration accounted for the reduc-
tion of T cells expressing high clonotype
levels, we analyzed fetoplacental tissues
from midpregnant Des-TCR SCID mice
by immunohistology. CD8*Des™ T cells
were absent from placental and embryonic
tissues during H-2" allogeneic and synge-
neic pregnancies (17); thus, clonotype-
positive T cells were not trapped in the
placenta. The site where T cells encounter
paternal K® remains undefined. Fetal cells
leaking into the maternal circulation may
provide an alternative source of paternal
alloantigens (18).

To investigate whether tolerance to pa-
ternal alloantigens is induced during preg-
nancy and then reversed after delivery be-
cause of antigen elimination (19), we over-
lapped the putative window of tolerance
with the immune challenge and used a phe-
nomenon no longer reversible after the de-
cline of tolerance as a readout system. The
growth of P815-K" tumor grafts was the cri-
terion for KP-specific T cell tolerance, be-
cause KP-transfected H-2¢ P815 mastocyto-
ma cells are rejected by KP-specific T cells in
H-29%k Des-TCR mice and are accepted by
Kb-tolerant mice (20). P815-K® cells admin-
istered at the time of fetal implantation (8)
generated a KP-positive tumor mass in Des-
TCR mice bearing a KP-positive conceptus,
but they were usually rejected during synge-
neic and third-party allogeneic pregnancies
(Fig. 4). P815-K" tumor growth was also
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observed in four of five Des-TCR mice in-
jected on days 10 to 11 of H-2" allogeneic
pregnancies. After delivery (21 to 28 days),
the ability to reject P815-K® grafts was re-
stored (four of four allogeneic pregnancies
and three of three syngeneic pregnancies).
Because KP-positive tumor grafts were only
accepted in the presence of a KP-positive
fetus, we conclude that pregnancy induces a
transient state of T cell tolerance specific for
the paternal alloantigens.

During pregnancy, paternal grafts may
survive only if they bear MHC-peptide
complexes identical to those of the fetus.
Mismatches resulting from graft expression
of tissue-specific peptides may recruit T
cells reactive to these “nonfetal” compo-
nents and may lead to graft rejection. Un-

MR

like mice harboring a normal T cell reper-
toire, Des-TCR transgenic mice may be
unable to mount such responses because
their repertoire is skewed toward the “tol-
erant” allospecificity (21). Recognition of
maternal MHC-peptide complexes ex-
pressed by the fetus may theoretically
block harmful T cell reactions against ma-
ternal autoantigens (22). Such extended T
cell “awareness” to fetal components
could in part explain why certain’ autoim-
mune diseases, such as multiple sclerosis
and rheumatoid arthritis, undergo remis-
sion during pregnancy (23), apparently in
the absence of general immunosuppres-
sion. If this hypothesis were true, under-
standing the unique features of T cell in-
teractions with fetal cells would provide a
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Fig. 3. Phenotypic alterations of CD8*Des™* T cells in response to paternal K® in Des-TCR SCID mice. (A
and B) Peripheral lymphoid organs of Des-TCR SCID mice are devoid of CD4*Des* T cells. Dot plots
represent clonotype versus CD4 and CD8 expression on B cell-depleted lymph nodes from H-29%k
Des-TCR mice (A) and total lymph node cells from H-29%k Des-TCR SCID mice (B). (C through E) Dot
plots represent TCRa versus clonotype expression on splenocytes from nonpregnant mice (C) and from
midpregnant H-29 Des-TCR SCID mice bearing H-2° allogeneic (D) or syngeneic (E) concepti. The data

are representative of three experiments.

Fig. 4. Impaired rejection
of Ke-positive tumor grafts
by Des-TCR mice bearing
a KP-positive conceptus.
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shown. Three types of effects were observed: growth of a KP-positive tumor (A), growth of a KP-negative loss
variant (B), and rejection (C); the table shows the incidence of these effects for the three pregnancy types.
Because =95% of injected P815-KP cells expressed KP®, the growth of the K°-negative variants resulted from
rejection of KP-positive cells and in vivo immune selection. KP-specific T cell responsiveness was significantly
impaired (P = 0.05, Fisher exact test) during H-2® allogeneic pregnancies when compared to syngeneic (P =
0.004) and third-party allogeneic (P = 0.04) pregnancies.
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powerful tool to reinstruct the immune
system in the course of autoimmune dis-
eases and transplant rejection.
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Relaxation of Arterial Smooth Muscle
by Calcium Sparks

M. T. Nelson, H. Cheng, M. Rubart, L. F. Santana, A. D. Bonev,
H. J. Knot, W. J. Lederer*

Local increases in intracellular calcium ion concentration ([Ca2*],) resulting from activation
of the ryanodine-sensitive calcium-release channel in the sarcoplasmic reticulum (SR) of
smooth muscle cause arterial dilation. Ryanodine-sensitive, spontaneous local increases
in [Ca2*), (Ca2* sparks) from the SR were observed just under the surface membrane of
single smooth muscle cells from myogenic cerebral arteries. Ryanodine and thapsigargin
inhibited Ca2* sparks and Ca2*-dependent potassium (K,) currents, suggesting that
Ca?* sparks activate K, channels. Furthermore, K, channels activated by Ca?* sparks
appeared to hyperpolarize and dilate pressurized myogenic arteries because ryanodine
and thapsigargin depolarized and constricted these arteries to an extent similar to that
produced by blockers of K, channels . Ca?* sparks indirectly cause vasodilation through
activation of K, channels, but have little direct effect on spatially averaged [Ca2*],, which

regulates contraction.

Myogenic arteries control blood flow in
the brain and respond to changes in intra-
vascular pressure. Increased intravascular
pressure causes a graded membrane poten-
tial depolarization of smooth muscle cells
and arterial constriction (myogenic tone)
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(I-3). Small, pressurized cerebral arteries
dilate when the membrane potential of the
smooth muscle cells is made more negative
over the physiological range of membrane
potentials (=60 to —30 mV), because
steady Ca’-influx through dihydropyri-
dine-sensitive, voltage-dependent Ca?™"
channels declines (2—4). Ca’* entry at
physiological membrane potentials affects
spatially averaged [Ca® "], in arterial smooth
muscle (3, 4). Although ryanodine-sensi-
tive Ca’ " -release channels directly contrib-
ute to the global [Ca?*], transient and con-
traction in cardiac muscle (5), their func-
tional role in smooth muscle has not been
established (4, 6, 7). We monitored ele-
SCIENCE

VOL. 270 « 27 OGTOBER 1995

mentary ryanodine-sensitive Ca’?*-release
events (Ca’™ sparks) from smooth muscle
SR by measuring rapid local changes in
[Ca%*], in smooth muscle cells isolated from
resistance-sized cerebral arteries. We pro-

vide evidence that ryanodine-sensitive
Ca’*-release channels in smooth muscle
SR, unlike their counterparts in cardiac and
skeletal muscle, have a central role in lim-
iting muscle contraction by activating K,
channels.

Single smooth muscle cells were isolated
enzymatically from myogenic cerebral (100-
to 150-pum in diameter posterior and middle
cerebral) arteries from rat (8). We used a
laser scanning confocal microscope and the
fluorescent Ca?* indicator fluo-3 (9) to
detect Ca®* sparks in single cells bathed in
physiological salt solution (Figs. 1 and 2).
The mean rise-time and half-time of decay
of Ca?* sparks were 20.2 = 2.3 ms and 48.0
+ 2.6 ms (n = 11), respectively (Fig. 1).
The mean peak [Ca?*], during the Ca’*
spark was 303 + 27 nM (assuming 100 nM
resting Ca?*) (Fig. 1) (10). The mean
spread of the spark at the peak was 2.38 *
0.14 pm (n = 11) (Fig. 1) (10), correspond-
ing to 0.8% of the surface area of the cell
membrane (11).

Ryanodine, which inhibits SR Ca?*-re-
lease channels at micromolar concentrations
(5, 6), blocked Ca** sparks in smooth mus-
cle cells (Fig. 2B). Ca®* sparks were not
observed in cells exposed to 10 wM ryanod-
ine and the Ca?* channel agonist Bay K
8644, whereas 88% of cells treated with Bay
K 8644 alone had Ca®* sparks. Ca®™ sparks
were not observed in cells exposed to thap-
sigargin (1 uM), which inhibits Ca?* uptake
into the SR by the Ca?*-ATPase (12). Ap-
plication of cadmium (200 pM), which im-
mediately blocks voltage-dependent Ca?*
channels, did not immediately block Ca?*
sparks in our cells (n = 7), a finding similar
to that observed in quiescent heart muscle
cells (5). However, prolonged exposure to
Bay K 8644 increased Ca?*-spark occur-
rence (Fig. 2B). The majority of Ca?* sparks
(59%) arose close to the sarcolemmal surfac-
es (within 1 pm) of the smooth muscle cells .
(Fig. 2C). The Ca?* sparks that were detect-
ed in the middle of the line-scan may still
have arisen at the sarcolemmal surface be-
cause smooth muscle cells hayve infoldings of
the surface membranes (caveolae). These re-
sults suggest that most Ca?* sparks in
smooth muscle cells from resistance-sized ce-
rebral arteries result from the opening of
ryanodine-sensitive Ca’*-release channels
in SR just under the cell membrane.

The proximity of the Ca?* sparks to the
cell surface raises the possibility that the
Ca’" spark serves as an intracellular signal
to the sarcolemmal membrane. Ca?*-acti-
vated K* (K,) channels that exist in this
membrane (2, 3) should be activated by the
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