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Resonance Raman (RR) spectroscopy was used to identify a methylnickel adduct (v,,., 
= 422 wave numbers) of carbon monoxide dehydrogenase (CODH) from Clostridium 
thermoaceticum. Formed at a nickelliron-sulfur cluster on CODH called center A, the 
methylnickel species is the precursor of the methyl group of acetyl-coenzyme A in an 
anaerobic pathway of carbon monoxide or carbon dioxide fixation. Rapid kinetic and RR 
studies demonstrated that methylation of nickel occurs by heterolysis of the methyl-cobalt 
bond (v,,., = 429 wave numbers) of a methylated corrinoidliron-sulfur protein. In com- 
bination with the earlier finding of an iron-carbonyl adduct at center A, detection of the 
methylnickel intermediate establishes a bimetallic mechanism for acetyl-coenzyme A 
synthesis. 

Carbon monoxide dehydrogenase is a me- 
talloenzyme that catalyzes the final steps 
in the reductive acetyl-coenzyme A 
(acetyl-CoA) pathway. This pathway al- 
lows anaerobic bacteria to grow on C02  or 
CO as a sole carbon source and methano- 
eenic archae to convert acetic acid to u 

methane. The final steps involve activat- 
ing and combining a methyl group and 
C O  to form an acetyl group which is then 
incorporated into acetyl-CoA. Here we 
establish that the C-C bond is formed bv 
an organometallic mechanism. 

CODH contains 2 Ni, 11 to 14 Fe, -1 
Zn, and -14 inorganic sulfides per het- 
erodimeric unit ( 1  ). The rnetals are orga- 
nized into three clusters, centers A, B, and 
C (2). Centers A and C (3,  4)  are Ni-FeS 
clusters. Center A catalyzes the final steps 
in acetyl-CoA synthesis (2 ,  5, 6). A mini- 
mal structure for center A has been defined 
by spectroscopic studies to be Ni-X-[4Fe- 
4S], where X is an unknown ligand bridge 
(7). An adduct between CO and center A 
was shown to be kinetically competent as 
the precursor of the carbonyl group of 
acetyl-CoA (2 ,  5). Surprisingly, this adduct 
was found to be a cornplex between CO and 
Fe, not Ni (3 ,  8, 9). What, then, is the role 
of nickel, which is required for acetyl-CoA 
synthesis (6,  10) ? A bimetallic mechanism 
for acetyl-CoA synthesis was proposed that 
included iron-carbonyl and methylnickel 
intermediates (9). 

The methyl group of acetyl-CoA is de- 
rived from C02  through steps that involve 
forrnate dehvdroeenase, a series of tetrahv- 
drofolate ( ~ ~ f o l a t e )  enzymes, and a corr'i- 
noidliron-sulfur protein (corrinoid-FeS 
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protein), forming a methylcobamide spe- 
cies on the corrinoid-FeS protein ( 1  1). 
This methylcobalt species donates the 
methyl group to CODH. Our first goal was 
to characterize the methylcobalt bond. 
We rnethylated the corrinoid-FeS protein 
(1 2 )  with CH31 and identified the methyl- 
Co stretching band at 429 cmp' in the 
resonance Raman (RR) spectrum (Fig. 1). 
This band moved to 420 cmp' when the 
corrinoid-FeS protein was methylated 
with I3CH3I (13). The band position in- 
dicates that the Co-C bond is weaker and 
longer than that of free methylcobalarnin 
in solution and other six-coordinate or- 
ganocobalt B,, model compounds that ex- 
hibit Co-C stretching [nodes at -500 
cmp' (14). 

Although it has been presumed that 
methylation of CODH occurs at center A 
(15), direct evidence has been lacking. 

When CODH (16) was reacted with the 
'2CH3-corrinoid-FeS protein (1 7), the 429- 
cm-' band from methyl-Co diminished and 
a new band at 422 cmp' appeared (Fig. 2). 
This band moved to 410 cm-' or to 392 
c m '  when I3CH3-corrinoid-FeS protein or 
CD3-corrinoid-FeS protein was the methyl 
donor (18) . Therefore, this band was as- 
signed as the stretching frequency for the 
methylrnetal bond at center A of CODH. 
The 422-cmp' band was also observed 
when CODH was reacted with 12CH31 and 
catalytic amounts of the corrinoid-FeS pro- 
tein (1 9). 

To identify the methyl acceptor, we iso- 
lated CODH from cells grown in medium 
containing 54Fe (98%), j8Fe (85%), or h4Ni 
(95%). (Natural abundance masses are 55.9 
for Fe and 58.7 for Ni.) When j4Fe or j8Fe 
was substituted into CODH, the metal-CH, 
stretching band remained at 422 cmp', the 
position observed with j6Fe-CODH (Fig. 2). 
Therefore, the methyl group does not bind to 
an iron site in center A. However, when 
h4Ni-CODH was methylated with the meth- 
ylated corrinoid-FeS protein, the band 
moved to 417 cm-I, establishing the mode 
as a Ni-methyl stretch (20). 

These results demonstrate that Ni ac- 
cepts the methyl group from the ~nethylated 
corrinoid-FeS protein. The transfer reaction 
could involve homolytic or heterolytic 
cleavage of the methyl-Co3- bond. These 
two lnechanisrns were distinguished by de- 
termining whether the transmethylation re- 
action generated Co2- or Cot as the prod- 

Fig. 1. RR spectra at 77 K of methylated corri- 
nold-FeS proteln, methylated with I2CH3I (bot- 
tom) and I3CH3I (top). The scattered light from a 
476.5-nm Ar+ Ion laser llne (-70 mW) was fo- 
cused into a trlple monochromator equlpped wlth 
a diode array multichannel detector. The collec- 
tion time was -3 hours per spectrum. Spectra 
were calibrated wlth carbon tetrachloride and di- 
methyl formamide. 

440 420 400 

Av (cm-I) 

Fig. 2. RR spectra (476 5 nm-exclted, 77 K) of 
the lndlcated ~sotopomers of reduced CODH 
treated wlth methylated corr~no~d/Fe-SP (corrl- 
nold-FeS proteln spectrum subtracted dlgltally) 
The top two spectia show the effect on the 422- 
cm-I band (metal-CH, stretching) of labellng 
CODH wlth 6 4 N ~  and "Fe, whereas the bottom 
three spectra show the effect of lncreaslng the 
mass of the methyl group Condltlons as In Flg 1 
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uct. The product of a heterolytic cleavage 
would be Cot ,  characterized by a sharp 
absorption peak at 390 nm [A€ (extinction 
coefficient change) = 5 mM-' cm-'I. The 
product of homolytic fission would be 
Co2+. Co2+ in the corrinoid1FeS protein 
adopts a four-coordinate geometry in which 
the benzimidazole base is displaced (termed 
base-off) resulting in a broad absorption 
band centered at 470 nm (21). A Cot 
product was established by stopped-flow ki- 
netics (22). When CODH was rapidly 
mixed with CH3-Co3+-corrinoid-FeS pro- 
tein, Cot was formed (Fig. 3). Clean 
isobestic points were observed at the ex- 
pected wavelengths, indicating that meth- 
yl-Co3+ was converted to Co' without an 
intermediate. That Cot is the product of 
the transmethylation reaction is supported 
by single wavelength-monitored kinetics 
(23). The decay rate for the 450-n~n peak of 
base-off methyl-Co3+ was equivalent to the 
formation rate for the 390-nru peak that 
characterizes Cot (1.2 sp' at 25°C) (Fig. 3, 
inset). Extra~olating this rate constant to 
5 5 " ~ ,  the oitimal irowth temperature for 
Clostridium thermonceticum, gave a rate con- 
stant of -10 s-' (24). Thus, formation of 
Cot is catalytically relevant because it oc- 
curred approximately fivefold faster than 
the kc,, for acetyl-CoA synthesis (25). Gen- 
eration of Co+ would be advantageous for 
the cell because it can then react with 
CH3-HI folate to regenerate the methylated 
corrinoid-FeS ~rotein.  For a ho~nolvtic rad- 
ical mechanism, a one-electron reduction of 
Co2+ would be required with each cycle of 
acetyl-CoA synthesis. 

Previous studies on the corrinoid-FeS 
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Fig. 3. Reaction of reduced CODH with methylat- 
ed corrinoid/Fe-SP. CODH was incubated with 
CO for 15 min and mixed rapidly with the methyl- 
ated corrinoid/FeS protein. The reaction was re- 
peated as the monochromator was moved in 10- 
nm increments between 370 and 520 nm.  Time 
slices were obtained by digitally connecting the 
data points 10 nm apalt, using the "point-by- 
point" software provided by Applied Photophys- 
ics. (Inset) Single wavelength-monitored kinetics 
of the reaction of 10 p.M CODH with 10 FM meth- 
ylated corrinoid/FeS protein followed at 390 nm.  

protein indicate that it is designed to fa- 
cilitate heterolytic Co-C bond cleavage. 
The cobamide is base-off in all three oxi- 
dation states 121, 26). Absence of a ni- . .  . 
trogenous donor ligand in the methyl- 
Co(II1) state has been reported to predis- 
Dose the Co-C bond toward heterolvtic 
ileavage and protect against radical chhm- 
istry (27). Thus, it is possible that the 
corrinoid-FeS protein ~nodulates the co- 
balt coordinatTon chemistry to activate 
the methyl group toward a nucleophilic 
attack. Heterolytic cleavage of the meth- 
yl-Co bond to generate Cof as the prod- 
uct requires the participation of a nucleo- 
philic group on CODH. 

The bio-organometallic catalytic cycle 
catalyzed by CODH can be summarized [see 
figure 3 of (9) or figure 1 of (28)] as follows: 
(i) An Fe-CO species is formed at center A 
(29). The C O  originates from the atmo- 
sphere or from the reduction of CO, to CO 
by center C of CODH. (ii) The low-valent 
Ni site in center A performs a nucleophilic 
attack on the methvlated corrinoid-FeS 
protein, generating Cot and methylnickel. 
(iii) The next step in acetyl-CoA synthesis 
involves either a carbonyl insertion to form 
acetyl-Ni or a methyl migration to generate 
an acetvl-Fe intermediate. (iv) The final . . 
step inv'olves thiolysis of the acetyl-metal 
intermediate to form acetyl-CoA. A sug- 
gested rnechanis~n for this step involves a 
metal-SCoA intermediate (28). 

We have demonstrated a bimetallic en- 
zymatic mechanism of C-C bond forina- 
tion. There are several examples of bime- 
tallic catalvsts in the or~ano~netallic 
chemical 1i;erature. A hetGobi1netallic 
complex containing CH3-Zr and Mo-CO 
undergoes further carbonylation to form 
an acetyl complex (30). Reaction of meth- 
~ l - M n ( C 0 ) ~  with an Fe-carbonyl complex 
yields a heterobimetallic bridging acetyl 
co~nplex (31). In addition, there are ex- 
amples of heterolytic (32) and hornolytic 
cleavage of an alkyl~netal co~nplex by an- 
other metal 133). Exam~les of CO inser- , , 

tion and methyl migration reactions have 
been reviewed (34). Another example is 
the "Monsanto process" for acetic acid 
synthesis from methanol and C O  in which 
a rhodium or iridium catalvst undergoes " 

methylation, carbonylation, and methyl 
migration to form acetyl-rhodium (35). 

Nickel is an essential trace element for 
bacteria, plants, animals, and humans (36). 
It is an essential component of four enzymes 
(CODH, urease, methyl-CoM reductase, 
and hydrogenase). Our results provide con- 
vincing direct evidence for a new biological 
role of nickel. The methylnickel interrnedi- 
ate represents the first example of a Ni-C 
bond in nature. Adenosylcobalamin and 
~nethylcobalamin are the only other known 
examples of alkylmetal bonds in enzymes 

(37). Demonstration of a methylnickel inter- 
mediate in acetyl-CoA synthesis sets a bio- 
logical precedent relevant to the mechanism 
of methane synthesis from methyl-CoM. It 
has been suggested that this reaction could 
occur through a methylnickel intermediate 
(38). 
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T Cell Awareness of Paternal 
Alloantigens During Pregnancy 
Anna Tafuri, Judith Alferink, Peter Moller, 

Gilnter J. Hammerling, Bernd Arnold* 

During pregnancy a semiallogeneic fetus survives despite the presence of maternal Tcells 
specific for paternally inherited histocompatibility antigens. A mouse transgenic for a T 
cell receptor recognizing the major histocompatibility (MHC) antigen H-2Kb was used to 
follow the fate of T cells reactive to paternal alloantigens. In contrast to syngeneic and 
third-party allogeneic pregnancies, mice bearing a Kb-positive conceptus had reduced 
numbers of Kb-reactive T cells and accepted Kb-positive tumor grafts. T cell phenotype 
and responsiveness were restored after delivery. Thus, during pregnancy maternal T cells 
acquire a transient state of tolerance specific for paternal alloantigens. 

I n  outbred species, inheritance of paternal 
histo~ompatibillt~ antigens by the etnbryo 
results in genetic mismatches to the mother. 
The semiallogeneic fetus is in direct physical 
contact with uterine and blood-borne cells 
of the mother, and fetal rejection by the 
maternal itnmune system is prevented by 
mechanisms as vet undefined (1). In mice. . , 

midgestational ilacenta expresses paternal 
MHC antigens of the K and D loci (1, 2);  
when grafted into maternal-strain recipients, 
it is rejected and induces sensitization to 
paternal alloantigens (3). However, neither 
ignorance nor tolerance of maternal T cells 
to paternal alloantigens has been conclusive- 
ly shown. Impairment of T cell responses has 
been observed, but its selectivity to paternal 
alloantigens retnains controversial (1 ,  4, 5). 
Midpregnant CBA mice, which are inbred, 
have unaltered expression of T cell receptor 
(TCR), CD4, and CD8 (6). However, phe- 
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notypic changes may go undetected because 
T cells specific for paternal alloantigens have 
low frequency in a normal T cell repertoire. 
Here, we used a TCR transgenic mouse mod- 
el (Des-TCR) harboring a T cell repertoire 
skewed toward the paternal alloantigen 
H-2Kh (7) to take advantage of the high 
frequency of allospecific cytotoxic T cells as 
well as the ease of monitoring the transgenic 
TCR with clonotype-specific antibodies. 

Virgin H-2k Des-TCR transgenic fe- 
tnales were mated with H-2h C57BL/6 
males, and K"-specific T cells were pheno- 
typically characterized during pregnancy. 
Nonspecific gestational effects (8) were 
controlled for by syngeneic and third-party 
allogeneic tnatings with H-2k CBA or H-2' 
ASW males (9), respectively. Midpregnant 
Des-TCR mice bearing a Kb-positive con- 
ceptus had reduced numbers of T cells with 
high expression of the clonotype (Fig. IB, 
left) and six to nine titnes tnore clonotype- 
positive cells devoid of CD4 and CD8 (Fig. 
lB, right) when colnpared to the results 
obtained for H-2' syngeneic (Fig. 1C) and 
H-2' third-party allogeneic (Fig. ID) preg- 
nancies. Therefore, maternal T cells specif- 
ically recognize paternal alloantigens. 




