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Large Arctic Temperature Change at the
Wisconsin-Holocene Glacial Transition

Kurt M. Cuffey,* Gary D. Clow, Richard B. Alley, Minze Stuiver,
Edwin D. Waddington, Richard W. Saltus

Analysis of borehole temperature and Greenland Ice Sheet Project |l ice-core isotopic
composition reveals that the warming from average glacial conditions to the Holocene in
central Greenland was large, approximately 15°C. This is at least three times the coin-
cident temperature change in the tropics and mid-latitudes. The coldest periods of the
last glacial were probably 21°C colder than at present over the Greenland ice sheet.

The Greenland Ice Sheet Project 1I
(GISP2) deep ice core has yielded a remark-
able history of the oxygen isotopic compo-
sition of central Greenland snowfall [§1%0
of ice (I)] that extends through the last
glacial period (2). The nearby Greenland
Ice Core Project (GRIP) record (3) is es-
sentially identical for ice formed after the
110,000-year-old Eemian interglacial, and
both are similar to isotope histories ob-
tained in other Greenland cores, giving
confidence that these cores record aspects
of regional climate (4). Using both empiri-
cal data (5) and physical models for isotope
fractionation (6), paleoclimatologists have
interpreted 3'%0 to be a measure of envi-
ronmental temperature T at the core site,
through a simple relation that we call the
isotopic paleothermometer: 850 = oT +
B, where o and 3 are constants. There are
two obstacles to making this interpretation
sound. First, the coefficients a and B are
not known a priori (7-9) because many
factors in addition to local environmental
temperature affect isotopic composition.
These include changes in sea-surface com-
position and temperature (10), changes in
atmospheric circulation (I1), changes in
cloud temperature, which may be different
from changes in surface temperature (12),
changes in the seasonality of precipitation
(13), and postdepositional isotopic ex-
change in the snowpack (14). Second, all of
these factors may vary through time in such
a way that a single, linear relation between
380 and T is inappropriate. Thus, there is
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strong motivation to seek paleotemperature
information that is entirely independent of
isotopic history (15, 16) to calibrate the
paleothermometer. We have obtained such
information by measuring temperature at
depth in the ice sheet, and we use this
information to evaluate a and B.

During the summer of 1994, one of us
(G.D.C.) measured temperature in the 3044-
m-deep GISP2 core hole from 70 m below
the surface to the base of the ice sheet. At
that time, the thermal perturbation from
drilling had decayed to less than 0.04°C, so
the temperature in the borehole matched
the temperature in the surrounding ice sheet
at this accuracy and better (17). To deter-
mine the coefficients a and B in the isotopic
paleothermometer, we used the GISP2 §'80
record and an initial guess for a and B to
specify a 100,000-year history of environ-
mental temperature. We then calculated
subsurface temperatures using T as the forc-
ing function on the upper surface of the ice
sheet in a linked heat- and ice-flow model.
Finally, we adjusted a, B, and the geother-
mal heat flux from the underlying bedrock,
using the Levenberg-Marquardt method (18)
to minimize the mismatch between modeled
and measured subsurface temperatures. For
this purpose we defined the mismatch index
J as a weighted integral over ice depth z of
the squared difference between modeled and
measured subsurface temperatures (M and ®,
respectively)

M(z) — O
[0i(z) + fop(z)

Here oy and o, are weighting functions
that assign relative importance to misfit in
various parts of the borehole: o, assigns
more weight to the upper part of the bore-
hole, where the temperature does not de-
pend on poorly known ice dynamical quan-,
tities, and o, assigns more weight to the
lower part of the borehole, where the tem-
perature depends on longer intervals of the
surface temperature history. The parameter
f, which is adjustable, controls the trade-off
between these opposing weighting schemes

dz (1)
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(19). The solution that minimizes J is non-
unique because we are free to choose f.

The heat-flow component of our model
is a numerical solution to the advection-
diffusion equation with heat sources (20).
The model is one-dimensional (vertical),
with a movable upper boundary to allow
changes in the ice sheet thickness. These
changes, and the vertical ice velocity re-
sponsible for heat advection, are calculated
with standard glaciologic assumptions for
flow on the flank of an ice divide with
simple parameterizations to account for
two-dimensional effects. In our model, the
ice sheet responds to local changes in snow
accumulation rate, surface temperature, and
ice crystal fabric and to distant changes in
ice margin position (21). To calculate ver-
tical heat advection most confidently, and
to account for two-dimensional effects on
ice particle paths, we tuned the vertical
velocity so that the modern depth-age scale
matched our model within a small toler-
ance. Because of this tuning, our conclu-
sions are insensitive to poorly known as-
pects of the ice dynamics. The GISP2
depth-age scale was determined by annual
layer counts to about 40,000 years ago (40
ka) and by correlation to the ocean-core
time scale (SPECMAP) through analysis of
the oxygen isotopic composition of O, gas
for older ice (22-24).

The snow accumulation rate history b(t)
exerts a dominant control on ice sheet
thickness and vertical ice flow, and hence
vertical heat advection. For the most recent
35,000 years, we derived b(t) from the layer
thickness measurements of Meese and oth-
ers (23), corrected for ice-flow thinning.
Our correction uses strain calculations as
done previously (24, 25), but we also in-
cluded the dependence of layer thinning on
the thickness history of the ice sheet (26,
27), which in turn depends on the temper-
ature history. Before 35 ka in the model
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Fig. 1. The central Greenland 8§80 history for the
most recent 40,000 years. The smooth curve re-
sults when this history is filtered to mimic the ther-
mal averaging in the ice sheet (45). Alltemperature
histories that give this same curve when filtered
are indistinguishable to borehole thermometry
(29). The right axis shows our calibrated temper-
ature scale.
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runs, we calculate b(t) from the oxygen
isotopes using a linear correlation between
380 and our b(t) for the most recent
35,000 years (28).

Because heat diffusion damps high-fre-
quency temperature changes as they propa-
gate from the surface down into the ice
sheet (thermal averaging), information on
rapid environmental temperature changes
in the past is poorly retained by the present-
day temperature field @(z) in the ice sheet
(29). Thermal averaging is more extensive
for older climatic events. In contrast, the
GISP2 880 record retains information
about rapid climatic changes. If we degrade
the 8'80 record so that it retains only the
age-dependent low-frequency content that
can be recovered from the present-day tem-
perature field (Fig. 1), then the abrupt ter-
mination of the Younger Dryas, the Young-
er Dryas itself, and the Bglling/Allergd pe-
riod become minor features of the history,
and earlier interstadial events are no longer

evident. Thus, our isotope calibration is
sensitive mainly to the long warming from
full glacial conditions to the Holocene, and
to Holocene temperature changes (30).

We find the optimal linear paleother-
mometer to be 380 = 0.327T — 24.8 if we
assume ice dynamics are well known (f = ;
refer to Eq. 1), and 8'80 = 0.335T — 24.5
if we assume ice dynamics are poorly known
(f = 1000) (31). Using these calibration
constants, we find a remarkably good fit
between the temperatures measured in the
borehole (Fig. 2) and the corresponding
modeled temperatures; the model accounts
for 99.88% of the variance of the measured
profile relative to steady-state. This is
strong evidence that 8'80 is indeed a faith-
ful proxy for long-term average temperature
at this site. There is no better explanation
for the success of such a simple calibration,
given the small number of free parameters
in the inversion.

However, the fit is not perfect. For in-

Table 1. Sensitivity of a = d(8'80)/dT to changes in ice dynamical quantities that are poorly known or
uncertain (47). The constant « is most sensitive to adjustments of the age-depth relation (the time scale);
however, even this sensitivity is minor. The 2% uncertainty in age at the Younger Dryas termination (1680
m in depth) is an estimate by Alley et al. (24).

AT (°C)
) 63
Model adjustment (per mil °C~1) Average glacial Coldest glacial
to Holocene to Holocene
No marginal retreat 0.327 156.3 21.4
Initial temperature 4°C warmer 0.328 156.2 21.3
Initial temperature 4°C colder 0.328 16.2 21.3
No north-south spreading 0.328 156.2 21.3
Use uncorrected b(t) 0.328 15.2 21.3
No fabric evolution 0.327 15.3 21.4
Age reduced by 2% at 1680 m
and by 20% at 2800-m depth 0.341 14.7 20.5
Age increased by 2% at 1680 m
and by 20% at 2800-m depth 0.318 16.0 22.4
1.0
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Fig. 2. Comparison of measured and modeled temperatures within the ice sheet, as functions of height

above the ice sheet bed (normalized to the thickness of the ice sheet). (A) The full ice sheet thickness. At
this scale, the measurements and the optimal model results are indistinguishable. (B) The upper part of
the ice sheet. The Little Ice Age, the mid-Holocene warmth, and the cold glacial are immediately evident
in the temperature profile, as they are in the GRIP hole (46). The temperature increases considerably
toward the bed because of geothermal heating. The best possible fit with the approximate modern spatial
value of a = 0.65 per mil °C~" (5) is a poor match to the data.
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stance, the isotope record underpredicts the
magnitude of cooling in the late Holocene.
If we allow some time variation of a (32), ]
is minimized with o ~ 0.33 per mil °C™!
(33) during the deglacial transition. For
much of the Holocene the optimal value for
a is 0.25 per mil °C™L. In the most recent
several centuries, for which higher frequen-
cy climate changes are resolved by the bore-
hole temperatures, a becomes larger (0.46
per mil °C™1) and closer to the value in-
ferred from modern temperature records
(33). Our result shows that the general
circulation model of Jouzel et al. (8) can
provide better estimates of past values of
than the value of 0.60 to 0.67 per mil °C~!
derived from the modern spatial correla-
tion; they predict a =~ 0.43 per mil °C™! for
the deglacial transition by linking changes
in atmospheric circulation and source tem-
perature to a physical model of isotope frac-
tionation (34).

The low value of a that we find for the
deglacial transition is well-constrained (Fig.
3) and insensitive to changes in ice dynam-
ical parameters (Table 1). The average tem-
perature difference between the Wisconsin
Glaciation and the Holocene is therefore
large (Fig. 1), 14° to 16°C, and the coldest
periods of the last glacial were probably
21°C colder than at present (Fig. 1). The
climatic deglacial temperature change (at
constant elevation) may be 1° to 2°C larger
than this because the Greenland ice sheet
was probably thinner during the glacial as a
result of a substantial reduction in accumu-
lation rate. Geologic evidence suggests that
the margins of the ice sheet retracted by
about 100 km during the Wisconsin-Holo-
cene transition (35). Using this value, and
assuming a symmetrical retreat of east and
west margins, we estimate that the ice sheet
thickened by 250 m from the last glacial
maximum to the present, and at least 100 m
from average glacial conditions to the
present (36).
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Fig. 3. The mismatch J between modeled and
measured borehole temperature profiles, normal-
ized to its minimum value, as a function of . The
well-defined minimum shows the location of the
optimal value for «, 0.327 per mil °C~". To pro-
duce this curve, we chose values for «, then in-
verted for B and the geothermal flux to optimize
the fit.



Recent estimates of the Wisconsin-to-

Holocene warming in the low mid-latitudes
are 4° to 6°C. This result is based on a
variety of methods, including snow line de-
pression studies (37), palynology (38), no-
ble gas paleothermometry applied to ground
water (39), and stable-isotope paleother-
mometry applied to coral reefs (40, 41).
The ~8°C temperature change commonly
inferred from ice-core isotopic records (37),
including those from the new GISP2 and
GRIP cores (2, 4), using the modern spatial
value for a of 0.60 to 0.67 per mil °C™!, is
only slightly larger than recent estimates
from the tropics. By contrast, we have
shown that the temperature change in cen-
tral Greenland was three to four times larg-
er than that in the tropics, a result that is
consistent with borehole temperature anal-
yses at Dye 3 in southern Greenland (42).
Many models have suggested that initially
minor changes in global temperature will be
magnified in the Arctic, with possibly ma-
jor consequences for sea level and planetary
albedo (43). Our data not only confirm that
such amplification happened in the past but
also show this amplification to be larger
than generally thought.
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Superplasticity in Earth’s Lower Mantle:
Evidence from Seismic Anisotropy
and Rock Physics

Shun-ichiro Karato,* Shuging Zhang, Hans-Rudolf Wenk

In contrast to the upper mantle, the lower mantle of the Earth is elastically nearly isotropic,
although its dominant constituent mineral [(Mg,Fe)SiO, perovskite] is highly anisotropic.
On the basis of high-temperature experiments on fabric development in an analog CaTiO,
perovskite and the elastic constants of MgSiO, perovskite, the seismic anisotropy was
calculated for the lower mantle. The results show that absence of anisotropy is strong
evidence for deformation by superplasticity. In this case, no significant transient creep is
expected in the lower mantle and the viscosity of the lower mantle is sensitive to grain
size; hence, a reduction in grain size will result in rheological weakening.

Rheological properties have an important
influence on the nature of flow in the deep
interior of the Earth, but both laboratory
and theoretical studies of deep mantle rhe-
ology have significant limitations. Quanti-
tative measurements of the strength of ma-
terials under high pressures and tempera-
tures are difficult, and no rheological mea-
surements have been performed under
lower mantle conditions. Neither the rheo-
logical constitutive relation (that is, the
dependence of viscosity on stress or grain
size or both) nor the absolute values of
viscosity of the lower mantle are well con-
strained (1). The rheology of the Earth’s
deep interior can be inferred from laborato-
ry data only after a large extrapolation in
time scales, which introduces a significant
amount of uncertainty. Similarly, theoreti-
cal estimates of rheological properties of the
Earth’s deep interior from time-dependent
deformation are difficult to make because of
(i) the poor sensitivity of the data to rheo-
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logical properties of the deep portions of the
Earth (2), (ii) the uncertainties in some key
input parameters such as the melting histo-
ry of ice sheets (3) in the analysis of the
postglacial rebound, or (iii) the density-to-
velocity conversion factor (4) in the anal-
ysis of the geoid.

One strategy to get around these diffi-
culties is to combine seismological observa-
tions of anisotropy and laboratory studies of
deformation-induced lattice preferred ori-
entation [for example (5)]. The anisotropic
structure of deformed materials depends on
deformation mechanisms (and deformation
geometry) [for a review, see (6)], and aniso-
tropic structures can be observed seismo-
logically as far down as the center (that is,
inner core) of the Earth (7). Plastic defor-
mation by diffusion or superplastic creep
will result in an isotropic structure, whereas
deformation by dislocation creep or twin-
ning results in an anisotropic structure.
Thus, although this approach will not pro-
vide direct estimates of the absolute values
of viscosities, it provides information as to
the rheological constitutive relation (stress
or grain-size dependence of viscosity) and
hence indirectly indicates rheological dis-
continuities or weakening associated with
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grain-size reduction (5, 8).

Here we apply this strategy to the lower
mantle. One of the most striking observa-
tions of the lower mantle is the absence of
significant seismic anisotropy (9) even
though the dominant mineral in the lower
mantle, orthorhombic (MgFe)SiO; pe-
rovskite, has significant elastic anisotropy
(10, 11). The absence of observed anisot-
ropy in the lower mantle could be attribut-
ed to (i) chaotic convection; (ii) limited
plastic deformation; (iii) the anisotropic
structure in the lower mantle which hap-
pens to be such that, for seismic waves
traveling nearly vertically [such as those
used in seismological studies (9)], the
amount of shear wave splitting is small
(12); or (iv) the fact that the deformation
does not result in an anisotropic structure.
The first hypothesis means that the lower
mantle materials could have anisotropic
structure (possibly due to deformation by
dislocation creep), but the scale of coher-
ent deformation is much smaller than the
length of typical seismic wave paths (for
ScS or SKS) so that, on average, no ap-
preciable anisotropy would be detected.
This hypothesis is unlikely because seismic
tomography indicates that the lower man-
tle structure is dominated by long wave
length features (13), and a high viscosity
of the lower mantle will make chaotic
convection difficult to achieve (14). The
second hypothesis is also untenable be-
cause seismic tomography indicates the
presence of downgoing and upwelling cur-
rents in the lower mantle (15), and the
Rayleigh number for the lower mantle is
likely to exceed the critical value [see, for
example, (1)]. Discrimination of the last
two alternatives requires an investigation
of the relation between the nature of de-
formation and seismic anisotropy in lower
mantle materials.

The most direct data on this subject
must ultimately come from high-pressure,
high-temperature deformation experiments
performed on polycrystalline (Mg,Fe)SiO,



