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Cosmogenic Ages for Earthquake Recurrence
Intervals and Debris Flow Fan Deposition,
Owens Valley, California

Paul R. Bierman,* Alan R. Gillespie, Marc W. Caffee

Model exposure ages (beryllium-10, aluminum-26) of boulders on an offset debris flow fan
yield an earthquake recurrence interval between 5800 and 8000 °Be:2%Al years for a
strand of the Owens Valley fault in California, which last ruptured in an earthquake of
moment magnitude >7.5 in 1872. Cosmogenic age estimates for this and several nearby
fan surfaces flanking the eastern Sierra Nevada are consistent with stratigraphic relations
and suggest that these surfaces were abandoned after 1000, 8000, and 21,000 '°Be:2Al
years ago. The wide scatter and nonconcordance of '°Be:2°Al ages on an older fan surface
suggest that boulder erosion and lowering of the fan surface there have influenced
apparent exposure ages.
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The east front of the Sierra Nevada rises
about 3000 m from the floor of Owens
Valley (Fig. 1). Uplift, fluvial down-cutting,
and repeated glaciation during the Pleisto-
cene have etched deep canyons into the
range front. At the mouths of these can-
yons, extensive alluvial fans merge into a
gently sloping surface bordering the range
and extending to the valley center, a dis-

ering criteria. Boulders on the Qgl surface
are rare, heavily weathered, and primarily
aplitic. Fan surface Qg3 has abundant, mod-
erately weathered granitic boulders and dis-
tinct boulder levees. Qg4, a terrace of Lone
Pine Creek, is the youngest surface on
which we collected samples for dating. It is

Table 1. Isotopic data, Lone Pine Creek debris fans.
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inset as much as 20 m into the Qg3 surface
and is covered by large, unweathered gra-
nitic boulders. Although the stratigraphic
relations among these three surfaces are
certain, their relation to a fourth and fault-
ed fan surface 8 km down Lone Pine Creek
is ambiguous (Fig. 2). Relative weathering
data indicate that the faulted fan is likely
younger than the Qgl and Qg3 fan surfaces
(4).

The faulted fan has been beheaded by
stream capture and is displaced vertically
more than 6 m by the Lone Pine fault
(LPF), a strand of the Owens Valley fault
(OVF), which runs along the valley bottom
for more than 100 km and in several places
cuts the Los Angeles aqueduct (Fig. 2). In
1872, the OVF ruptured for a distance of
100 * 10 km, generating an earthquake of
estimated moment magnitude 7.5 to 7.7
(5). During this event, right-lateral, oblique
slip on the LPF broke the fan surface. Ob-
servations from trenches (4) suggest that
three events are recorded by colluvial wedg-
es in the adjacent graben; this observation
is supported by scarp morphology as well as
desert-varnish rings (4) and weathering
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zones on a large (4-m) boulder (sample
LPF-14) exposed in and above the fault
scarp. The first faulting event recorded by
sediments in the graben probably occurred
before the faulted fan was beheaded by
stream capture, which prevented further
‘deposition (4).

Both the actual and average recurrence
intervals of ground-rupturing earthquakes
on the LPF had been difficult to determine
because, until this study, neither the offset
fan surface nor the faulting events had been
dated directly (6). Previously, recurrence
intervals (5000 to 10,500 radiocarbon
years) were calculated by assigning the
faulted fan a minimum, late glacial age of 10
ka (thousand years ago) and by assuming
that the fan, because it does not preserve a
shoreline of Pleistocene Lake Owens, was
younger than radiocarbon-dated shoreline
tufa (21,000 * 1300 radiocarbon vyears,
sample USGS-609) (4). To estimate the
age of the faulted fan surface and to inves-
tigate the utility of in situ—produced cosmo-
genic isotopes for dating debris flow fan
surfaces, we collected and analyzed 23 sam-
ples from granitic boulders on four fan sur-
faces near Lone Pine (7). To calculate mod-
el ages from measured isotope abundances,
we used currently accepted isotope produc-
tion rates, which may be 10 to 20% too
high (8-10). Because production rates of
19Be and 2°Al remain uncertain, we inter-
pret isotope abundances as model ages prop-
agating a production rate uncertainty of
+20% (10).

Our isotopic data provide a direct esti-
mate of the timing of boulder deposition
and abandonment of the faulted fan and
allow calculation of average recurrence in-
tervals for ground rupture on the LPF (Ta-

Fig. 1 (left). Oblique aerial photo looking west toward the east front of the Sierra
Nevada and over fan surfaces Qg1, Qg3, and Qg4 of Lone Pine Creek. Lone Pine
Creek is inset into surface Qg4. The road paralleling Lone Pine Creek indicates
Fig. 2 (right). Oblique aerial photo of Alabama Hills west of Lone Pine,

scale.
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ble 1). Model '°Be:?°Al ages (assuming no
isotopic inheritance and no boulder ero-
sion) for five boulders on the faulted fan
range from 8.0 to 17.4 ka with a mean
exposure age of 11.7 ka. The '°Be and 26Al
model ages are well correlated (Fig. 3), sug-
gesting that the variability in ages is not due
to analytic uncertainties, but rather mainly
reflects differing amounts of isotope inher-
itance from predeposition exposure to cos-
mic rays, effects of exposure geometry, boul-
der erosion, and time-transgressive deposi-
tion on the fan surface. Although we can-
not chose confidently one explanation over
another, we favor the latter explanation for
three reasons: (i) The Qg4 data indicate
isotope inheritance is minimal, (ii) the sam-
pled boulders are not heavily weathered (4),
and (iii) the boulder with the lowest aver-
age '°Be:?°Al exposure age (LPF-12; 8.0 ka)
is located at the margin of the youngest
abandoned channel (LPC-2), which was
probably active after the first faulting event
(4), whereas desert-varnish rings show that
the boulder with the oldest °Be:?°Al aver-
age exposure age (LPF-14; 17.4 ka) is locat-
ed near an older abandoned channel and
records all three faulting events (4).

There are various ways to calculate a
recurrence interval for ground rupture on
the LPF assuming that faulting recurs at
characteristic, regular intervals. At the sim-
plest, if the fan surface age were taken to be
the average age of the boulders on it (11.7
ka, n = 5) and the fan has been offset by
three events (4), then the average recur-
rence interval would be 5850 years; howev-
er, the faulted fan is composed of debris
flows emplaced over a period of time and
therefore has no single age. Lubetkin and
Clark (4) pointed out that three faulting
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events ruptured the southern, older portion
of the fan near boulder LPF-14 (17.4 ka)
from which we calculate an average recur-
rence interval between 5800 to 8700 years.
To the north, the fault scarp offsets the last
active channel of Lone Pine Creek on the
faulted fan and only two events are pre-
served there. LPF-12 (8.0 ka) was deposited
or exposed on the margin of this channel
(LPC-2) after the first faulting event but
before the fan was abandoned and the sec-
ond and third faulting events occurred (4),
yielding an average recurrence interval be-
tween 4000 and 8000 years. Conservatively,
the average earthquake recurrence interval
on the Lone Pine fault is the outer limits,
4000 to 8700 !°Be:*°Al vyears; however,
5800 to 8000 years is the range of recur-
rence intervals consistent with the dating at
both sites.

The recurrence intervals we have calcu-
lated are similar to those previously calcu-
lated (4); however, our calculations are
more robust because we estimated the age of
the fan surface directly. Our dating also
suggests that deposition on the faulted fan
continued through the late Pleistocene be-
fore early Holocene stream capture and
abandonment of the faulted fan <8000
10Be:20Al years ago (LPF-12). This finding
is consistent with radiocarbon dates on
charcoal (610 = 70 C years ago, sample
QL-4361; 4030 = 60 '“C years ago, sample
TO-1666) which indicate that Holocene
fluvial activity and fine-grained debris flows
have deposited material on the Qg5 or
modern fan (Fig. 2). Cosmogenic dating of
the Qg4 surface and radiocarbon dating of
the Qg5 fan suggest that debris flow activity
and fan deposition continued through the
Holocene and that the debris flow that

California. A faulted and beheaded late Pleistocene fan is on the right (FF). On the
left is the active, Holocene fan (Qg5). Sample sites LPF-12 and LPF-14 and the
abandoned channel, LPC-2, are identified with arrows. LPF, Lone Pine fault scarp;
AQ, Los Angeles aqueduct. Houses and roads indicate scale. View to west.



blocked the Los Angeles aqueduct at Olan-
cha during the summer of 1990 is not an
isolated geologic hazard in Owens Valley.
However, the relatively small volume of
unweathered boulders on Owens Valley
fans and the deep incision of Lone Pine
Creek suggest that the rate of Holocene
debris flow deposition is lower than during
the Pleistocene.

The three other fan surfaces have con-
sistent relative and cosmogenic ages. Using
the five samples from unweathered debris-
flow boulders on the youngest, inset Qg4
surface, we have demonstrated that cosmo-
genic isotope abundances can be measured
successfully in late Holocene samples. Our
results indicate that deposition on the Qg4
surface ceased about 1000 years ago. The
discordance between some Qg4 '“Be and
26 Al ages may reflect inheritance from prior
exposure, preferential radiogenic or muono-
genic production of 2°Al, or errors in blank
correction for these very low-level samples.
The low isotopic abundances measured in
samples from the Qg4 surface suggest that
for boulders on debris flow fans in Owens
Valley, isotopic inheritance from cosmic ray
exposure before deposition on the fan is
probably minimal (=2.0 ka). This lack of
significant prior exposure contrasts with ap-
parent inheritance for clasts sampled from
predominately fluvial fans in Death Valley,
100 km east (11).

The extensive Qg3 surface (mean '“Be:
26Al age, 25 ka) represents the end (by 21
ka) of an earlier depositional period and
provides a maximum limiting age for the
deep fan-head incision of Lone Pine Creek,
after which boulders could no longer be
deposited on the Qg3 surface (Fig. 1). The
clustering of six of the seven ages suggests
that erosion by fire spalling has been min-

Fig. 3. Scatter plot of '°Be
and 2®Al ages. Samples from
each fan surface are boxed
and identified. FF, faulted
fan. Error bars (10) include
propagated counting statis-
tics, blank and carrier correc-
tion, and total Al and Be
abundance, but no uncer-
tainty in production rates. Ar-
rows show the likely time-
transgressive nature of boul-
der deposition on the FF sur-
face and differing burial and
exposure histories of boul-
ders on the Qg1 surface. 1
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imal or similar among boulders (12). The
single boulder with the higher exposure age
(LPF-16; 36 ka) lies farther from the fan
axis and closer to the mountain front than
all other samples and may represent either
an earlier episode of fan deposition or an
isolated rockfall from the Sierran escarp-
ment. [sotopic measurements on the Qg3
surface suggest that late Pleistocene, Sierra
Nevada debris-fan surfaces likely preserve a
consistent age signal and that a significant
source of bouldery debris (extensive glacia-
tion?) was available to supply material for
deposition on the Lone Pine fans between
21 and 26 ka.

The magnitude and variety of model
exposure ages calculated for boulders on the
Qgl surface are consistent with the oldest
relative age of this surface, the degree of
postdepositional surface lowering, and the
magnitude of boulder weathering. The dis-
cordance of Al and Be ages (age '°Be > age
26A1) is consistent with a scenario in which
sampled boulders were exposed to cosmic
radiation, then buried by debris flows and
re-exhumed by fan surface lowering (Fig. 3).
During burial, more of the relatively short-
lived ?SAl would decay than would the
longer lived '°Be. The large range of model
exposure ages on this surface probably rep-
resents differing times of boulder burial and
exhumation, differing rates of boulder ero-
sion after exhumation, and perhaps the
time-transgressive nature of fan deposition.
The Qgl boulder with the lowest isotopic
abundance (LPF-1) is coarse grained, heavi-
ly weathered, and stands <1 m above the
fan surface. The remaining boulders plot on
a line trending away from Be and Al corre-
lation, suggesting differing exposure and
burial histories (Fig. 3). Cosmogenic data
can be used to suggest that deposition on
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Qgl began before 128 ka (AHI-14), pre-
suming none of the sampled boulders inher-
ited "°Be or 2°Al from cosmic ray exposure
before deposition.

Current uncertainties in cosmogenic iso-
tope production rates prevent meaningful
comparison of our estimates for the timing
of fan surface abandonment with global cli-
mate records such as 8'%0O measured in ice
and deep-sea sediments. The paucity of
1°Be and 2°Al measurements on samples
from Sierra Nevada moraines precludes us
from understanding the temporal relation
between moraine and fan deposition. Tak-
ing existing data at face value, it appears
that the cessation of fan deposition lags
moraine deposition consistent with field
stratigraphic evidence. Earlier '°Be and
26A1 dates from latest Pleistocene moraines
at Pine Creek (11), 120 km north of Lone
Pine (13.8, 13.9, and 17.5 ka), suggest that
these moraines predate the abandonment of
the Lone Pine faulted fan and postdate
abandonment of the Qg3 surface. Because
boulders on the Qgl fan surface appear to
have complex burial and exposure histories,
correlation with older Pine Creek moraine
samples (95 and 115 ka) is not meaningful.
Lastly, our model ages for fan aggradation
can be compared with the only extensive
cosmogenic data set published so far for
Sierra Nevada moraines (13). From revised
Cl production rates, exposure ages of
boulders from three nested moraines at
Bloody Canyon, about 200 km north of
Lone Pine, average 16.0, 17.3, and 36.7 ka
(14). The two younger moraines predate
abandonment of the faulted fan and post-
date deposition on the Qg3 surface. The
oldest moraine appears to predate abandon-
ment of the Qg3 surface.

We have demonstrated that Sierra Ne-
vada alluvial fans preserve a datable record
of fan surface activity and abandonment.
Better production rate estimates and more
cosmogenic measurements of samples from
moraine and fan surfaces may reveal the
temporal relation between fan and moraine
deposition and let us fully exploit these
terrestrial archives of climate change.
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Lithoautotrophic Microbial Ecosystems
in Deep Basalt Aquifers

Todd O. Stevens*® and James P. McKinley

Bacterial communities were detected in deep crystalline rock aquifers within the Columbia
River Basalt Group (CRB). CRB ground waters contained up to 60 pM dissolved H, and
autotrophic microorganisms outnumbered heterotrophs. Stable carbon isotope mea-
surements implied that autotrophic methanogenesis dominated this ecosystem and was
coupled to the depletion of dissolved inorganic carbon. In laboratory experiments, H,, a
potential energy source for bacteria, was produced by reactions between crushed basalt
and anaerobic water. Microcosms' containing only crushed basalt and ground water
supported microbial growth. These results suggest that the CRB contains a lithoautotro-
phic microbial ecosystem that is independent of photosynthetic primary production.

The existence of microorganisms in the
deep terrestrial subsurface has been noted
for decades (1); viable microorganisms are
present at depths as great as several thou-
sand meters below the surface, in broadly
variable physical and chemical settings (2).
Nutrient flux at such depths is usually very
low because of limitations of sediment
chemistry and hydrology. The few measure-
ments of in situ metabolic rates from these
systems are the lowest recorded, which in-
dicates that although microorganisms are
active at such depths, they function in
Earth’s most oligotrophic environments (3).
Most reported subsurface communities are
ultimately, though indirectly, dependent on
photosynthesis for energy; they either use
remnant organic carbon deposited with sed-
iments or use dissolved oxygen as a meta-
bolic terminal electron acceptor. As nutri-
ents are exhausted from sediments, the en-
closed microbial population should become
extinct. Here, we report evidence for an
active, anaerobic subsurface lithoautotro-
phic microbial ecosystem (SLiME) within
the CRB that appears to derive energy from
geochemically produced hydrogen. SLiMEs
should persist independently of photosyn-
thetic products.

The CRB is a series of Miocene tholei-
itic continental flood basalts that formed 6
to 17 million years ago and cover >163,000
km? (4). In our study area (Fig. 1), the CRB
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is 3 to 5 km thick. With increasing depth,
the age of the water in confined aquifers
between basalt flows increases (ages may
exceed 35,000 years), as does the lateral
distance to recharge. Shallow ground waters
are low-sulfate, low-chloride bicarbonate
solutions of moderate pH (generally 7.5 to
8.5), with calcium as the dominant cation.
At depth, sodium and chloride predomi-
nate, and pH varies from 8 to 10.5 (4, 5).
Sulfate concentrations are below 0.5 mM
even at depth, except in geographically re-
stricted zones where sulfate concentrations
may exceed 2.0 mM. The igneous rocks in
the study area contained little organic car-
bon, yet we found relatively high popula-
tions of anaerobic microorganisms within
aquifers hundreds of meters below any sed-
imentary interbeds (6).

To identify the electron acceptors and
electron donors to which CRB communi-
ties are adapted (7), we investigated the
metabolic capabilities of bacteria from eight
aquifers. We measured the population sizes
of bacteria capable of dissimilatory Fe(III)
reduction (DIRB), sulfate reduction (SRB),
methanogenesis (MB), fermentation (FB),
or acetogenesis (AB). We also compared
numbers of organisms that could grow on
simple organic compounds (heterotrophs)
with numbers of organisms that could grow

- with H, as the sole electron donor (au-

totrophs). The aquifers were sampled (8)
through a series of preexisting wells (Fig. 1).
The results of geochemical measurements
(Table 1) were consistent with microbio-
logical measurements (Table 2). DIRB were
present only at low numbers, FB were com-



