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Magnetic source imaging revealed that the cortical representation of the digits of the left 
hand of string players was larger than that in controls. The effect was smallest for the left 
thumb, and no such differences were observed for the representations of the right hand 
digits. The amount of cortical reorganization in the representation of the fingering digits 
was correlated with the age at which the person had begun to play. These results suggest 
that the representation of different parts of the body in the primary somatosensory cortex 
of humans depends on use and changes to conform to the current needs and experiences 
of the individual. 

Evidence has accumulated over the past 
two decades that indicates that alterations 
in afferent input can induce plastic reorga- 
nizational changes within the adult mam- 
malian central nervous system (1 ). Changes 
in the relation between peripheral sensory 
fields and their central representations have 
been observed for the somatosensory (2), 
visual (1, 3 ,  4), and auditory systems ( 5 ) ,  
and comparable changes also have been 
found for motor systems (6). In many of 
these experiments, the removal of afferent 
input from a cortical region resulted in an 
6'. ~nvasion" by a neighboring area whose 
innervation remained intact. For example, 
the cortical region representing a digit be- 
fore amputation in owl monkeys could be 
activated after amputation by tactile stim- 
ulation of an intact adjacent finger (7). The 
changes noted were of the order of a few 
millimeters. More extensive ~lastic chanees - 
have recently been observed after the abo- 
lition of input from larger portions of the 
body-for example, with somatosensory 

deafferentation of an entire forelimb in ma- 
caque monkeys (8) and upper extremity 
amputation in humans (9-1 1 ). 

In addition, it has been shown in studies 
with owl monkeys that a prolonged increase 
of tactile stimulation to the distal pad of 
one or two phalanges results in a greatly 
increased cortical representation specific to 
that portion of the fingers (12, 13). Evi- 
dence has also been reported that suggests 
an increased cortical representation of the 
index finger used in reading by blind Braille 
readers ( 14). 

Violinists and other string players pro- 
vide a good model for the study of the 
effects of differential afferent input to the 
two sides of the brain in humans. During 
their practice or performance, the second to 
the fifth digits (D2 to D5) of the left hand 
are continuously engaged in fingering the 
strings. a task that involves considerable ., . 
manual dexterity and enhanced sensory 
stimulation. At the same time, the thumb 
grasps the neck of the instrument and, al- 

., 
String players .. 

though not as active as the fingers, engages 
in relatively frequent small shifts of position 
and pressure. The right hand, which manip- 
ulates the bow, participates in a task involv- 
ing much less individual finger movement 
and fluctuation in tactile and pressure in- 
put. Here, we present data from magnetic 
source imaging that indicates that the cere- 
bral cortices of string players are different 
from the cortices of controls in that the 
representation of the digits of the left hand 
is substantially enlarged in the cortices of 
string players. 

Nine musicians (six violinists, two cel- 
lists, and one guitarist) who had played 
their instruments for a mean period of 11.7 
years (range, 7 to 17 years) served as sub- 
jects for our study. Six nonmusicians served 
as controls (15). The mean age for both 
groups was 24 + 3 years. Before our inves- 
tigation, the musicians kept a diary for 1 
week, recording the amount of time prac- 
ticed per day (mean 9.8 ? 8.4 hours per 
week), and had estimated the amount of 
time spent practicing during the previous 
month and year (10.8 -C 8.8 hours per 
week). 

During the experimental session, so- 
matosensory stimulation was delivered to 
the first digit and, in separate runs, to the 
fifth dieit of either hand. Stimulation con- - 
sisted of light superficial pressure applied by 
means of a ~neumatic stimulator with the 
use of standard, nonpainful stimulation in- 
tensity (9, 16, 17). The data (Fig. 1) indi- 
cate that the center of cortical responsivity 
for tactile stimulation of the digits of the 
left hand was shifted in musicians as com- 
pared to that in controls, while at the same 
time the strength of response increased. 
The topographic shift was toward the mid- 
sagittal plane, which, along the surface of 
the postcentral gyrus, is toward the region 
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Fig. 1. (A) Equivalent current dipoles elicited by stimulation of the thumb (Dl) 
and fifth finger (D5) of the left hand are superimposed onto an MRI (magnetic 
resonance imaging) reconstruction of the cerebral cortex of a control, who 
was selected to provide anatomical landmarks for the interpretation of the 
MEG-based localization. The arrows represent the location and orientation of 
the ECD vector for each of the two digitsaveraged across musicians (black) 
and controls (yellow). The length of the arrows represents the mean magni- 
tude of the dipole moment for the two digits in each group. The average 
locations of D5 and Dl are shifted medially for the string players compared to 

controls; the shift is larger for D5 than for Dl. The dipole moment is also larger 
for the musicians' D5, as indicated by the greater magnitude of the black 
arrow. (8) The magnitude of the dipole moment as a function of the age of 
inception of musical practice; string players are indicated by filled circles, 
control subjects by hatched circles. Note the larger dipole moment for indi- 
viduals'beginning musical practice before the age-of 12: (C) Scatterplot of the 
Euclidean distances (in centimeters) between the cortical representations of 
Dl and D5. This distance for the musicians' left hands was greater than that 
in controls, but this difference is not statistically significant. 
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of the cortex that represents the palm of the 
hand (18). For D5 (little finger) of the left 
hand, the shift was 0.7 cin ( t  = 3.6, P < 
0.01, degrees of freedoin = 13); for D l  
(thumb), the shift was 0.5 cin ( r  = 3.3, P < 
0.01). This shift of D5 was significantly 
greater than the shift of D l .  

Correspondingly, the analysis of vari- 
ance (ANOVA),  which included data from 
both hemispheres ( IS) ,  showed an iinterac- 
tion of group (a factor in ANOVA) and 
digit [F(1,13) = 4.78, P < 0.051. This effect 
was dependent on the side on which stiin- 
ulation was given: There were no signifi- 
cant shifts for the digits of the right hand of 
the musicians compared to those of the 
controls. The  dipole moment, which is pre- 
sumed to be an index of total neuronal 
activity, also increased for the stimulation 
of the digits of the left hand of musicians 
compared to the left hand of controls 
[ANOVA interaction of group and side of 
stimulation, F(1,13) = 5.54, P < 0.051. The 
increase was larger for D5 ( t  = 5.4, P < 
0.01) than for D l  [ t  = 2.0, P < 0.1; 
ANOVA interaction of group and digit, 
F(1,13) = 4.81, P < 0.051 (19). 

There was a correlation hetween the age 
at which the string players began studying 
their instruments and the magnitude of the 
change in the dipole lnomeint of D5 com- 
pared to that in controls ( r  = 0.79, P = 

0.01) (Fig. 1B). The  relation hetween the 
amount of practice and the cortical mea- 
sures was not significant. The increase of 
the dipole inolnent of hoth D l  and D5 in 
the string players indicates that an extend- 
ed cortical network responds to tactile stim- 
ulation. If the active area expands, the 
point location deternlined by an equivalent 
dipole model will shift inward. Given the 
spherical geoinetry of the head, nneasure- 
ments of the D l  and D5 representations 
would approach each other if the center of 
activity remained unchanged. Conversely, 
an increase in area of representation would 
produce opposing effects on the measured 
cortical distance hetween D l  and D5, 
which could explain the absence of a sig- 
nificant group difference in the measured 
distance hetween cortical representations of 
D l  and D5 (Fig. 1C). Further experiinents 
should attempt to model the size of the 
activated area to resolve this question. 

The sienificant shift in medial directioll - 
of the cortical representation of the fingers 
of the left hand in string players and the 
increase in the corresponding dipole mo- 
ments suggest that the cortical territory oc- 
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cupled hy the representation of the diglts 
increased in string players as conlpared with 
that in controls. Two alternate interpreta- 
tions of our data should he taken into ac- 
count. First, it could he argued that individ- 
uals with a genetically determined large 
representation of the left hand digits inake 
superior string players and therefore are 
more likely to continue with musical train- 
ing once they have hegun. However, in 
research with animals, use-deoendent en- 
largeinents of portions of the somatosensory 
map in cortical area 3h have been clearly 
demonstrated under conditions of increased 
use generally similar to those in this study 
( 1  2 ,  13). In either case, the relatively larger 
representations of individually ilnportant 
digits could have the role of enhancing the 
particular needs of a string player in an 
adaptive manner. 

A second alternative explanation of our 
results is that thev are a conseuuence of a 
shift in cortical responsivity comhined with 
an iintensificatioin of the response. However, 
we think a Inore plausible explanation is that 
the cortical territory of the left-hand digits 
has exoanded. This is more olausihle hecause 
(i) there is a correlation hetween amount of 
cortical reorganization and age [or stage of 
central nervous system (CNS) maturation] 
at which musical practice hegain and (ii) the 
equivalent current dipole (ECD) shift fol- 
lows the one direction that is consistent with 
the expansion interpretation. 

Related work 11 0) has shown that there is ~, 

a strong correlation in hulnans with upper 
extremities amoutated hetween extent of cor- 
tical reorganization and amount of phalntoln 
liinb pain experienced. Altho~rgh phantom 
liillb pain is a lnaladaptive result of nervous 
system injury, our results delnonstrate the 
functional relevance of cortical reoreaniza- 
tion, siinilar to results reported in the context 
of the visual system (3) and auditory system 
(1 2, 20, 21 ). One may speculate that one role 
of cortical reorganization inight be to contrih- 
Ute to the functional recovery of organisms 
after CNS damage, possibly in ;erms o? recov- 
ery from CNS shock. The evolutionary ad- 
vantage of this mechailism is brought into 
question, however, by the fact that the process 
of recovery is usuallv slow and thus would not 
permit an organism that was seriously i n -  
paired to survive loilg enough to engage in 
successf~~l reproduction and transillission of 
this capacity (22). 

However, in accord with the results of 
Merzenich and co-workers (7), continuous 
plastic reorganization of cortical space that 
oerinits raoid reallocation of available CNS 
circuitry would confer an obvious practical 
advantage. The possible contribution of 
cortical reorganization to recovery of func- 
tion after C N S  injury inight thus he an 
adventitious result that "piggy backed" 
ointo a mechanism, which permitted the 

much inore critically inlportant plastic pro- 
cesses associated with learning, physical 
growth during maturation, and adjustinent 
to current environmental demands. The  
role of this mechanism in the recovery of 
function would hecorne inlportant only 
when protecting an individual with C N S  
damage would artificially prolong survival 
long enough for extensive cortical reorga- 
nization to work. 
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