
nebulin are interdeuendent. Therefore, the  
precision and tissue specificity of the  sarco- 
meric assembly program in  vertebrates ap- 
pear to necessitate coordinated splicing de- 
cisions in  the  titin and nebulin precursor 
mRNAs. 
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Requirement for Generation of H202 for 
Platelet-Derived Growth Factor Signal 

Transduction 
Maitrayee Sundaresan, Zu-Xi Yu, Victor J. Ferrans, 

Kai kobad Irani, Toren Finkel* 

Stimulation of rat vascular smooth muscle cells (VSMCs) by platelet-derived growth factor 
(PDGF) transiently increased the intracellular concentration of hydrogen peroxide (H,O,). 
This increase could be blunted by increasing the intracellular concentration of the scav- 
enging enzyme catalase or by the chemical antioxidant N-acetylcysteine. The response 
of VSMCs to PDGF, which includes tyrosine phosphorylation, mitogen-activated protein 
kinase stimulation, DNA synthesis, and chemotaxis, was inhibited when the growth 
factor-stimulated rise in H,O, concentration was blocked. These results suggest that 
H,O, may act as a signal-transducing molecule, and they suggest a potential mechanism 
for the cardioprotective effects of antioxidants. 

Evidence from both plant and animal cells 
suggests that H,02  may act as a n  intracel- 
lular second messenger. Hydrogen peroxide 
may regulate the defense of plants against 
viral pathogens by serving as a small diffus- 
ible molecule to orchestrate the hypersensi- 
tive response (1 ). Salicylic acid binds to and 
inactivates tobacco catalase, leading to a rise 

M. Sundaresan, K. Irani, T. Finkel, Cardiology Branch, 
National Heart, Lung, and Blood lnst~tute (NHLBI), Na- 
t~onal lnst~tutes of Health (NH), Bethesda, MD 20892- 
1650, USA. 
Z.-X. Yu and V. J. Ferrans, Patholoav Sect~on, NHLBI, 

in H 2 0 2  concentration ([H202])  and the 
activation of gene expression (2).  In  mam- 
malian cells, H 2 0 2  has been implicated as 
an  indirect activator of the  transcription 
factor nuclear factor kappa B (NF-KB) (3). 
Because NF-KB modulates the expression of 
a varietv of immune and inflammatorv mol- 
ecules, ;t would appear that a role f o r ' ~ ~ 0 ~  
in host defense ~nechanisms has been con- 
served from plants to animals. Similarly, 
H 2 0 2  may function in triggering apoptosis 
in both ulant and animal cells 11, 4). 

Stimulation of various ma~lllnalian cell 
NH,  Bethesda, MD 20892-1518 USA. types with either cytokines, phorbol esters, 
'To whom correspondence should be addressed or growth factors increases the secretion of 
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H 2 0 2  into the extracellular space (5, 6). We 
investigated the possibility that a parallel 
between nitric oxide (NO) and H202  might 
exist. High concentrations of these diffusible 
reactive oxygen intermediates play a role in 
host defense; however, at low concentra- 
tions, NO modulates signal transduction of 
endothelial and neuronal cells. To evaluate 
whether H202  could have a similar function 
in signal transduction, we studied VSMCs 
for which low concentrations of exogenous 
H202  are mitogenic (7). 

PDGF stimulation of primary rat VSMCs 
revealed an increase in intracellular [H202] 
as measured by the oxidation of the perox- 
ide-sensitive fluorophore 2',7'-dichlorofluo- 
rescin (DCF). Microfluorometric study with 
confocal microscopy showed that, compared 
with quiescent cells, stimulation with the 
PDGF-AB isoform (5 ng/ml) rapidly in- 
creased DCF fluorescence by 50- to 100-fold. 
The PDGF-stimulated increase in [H202] is 
transient (Fig. lA), with [H202] peaking 
within the first few minutes after growth 
factor addition and then returning rapidly 
toward basal levels. This time course is sim- 
ilar to that described for PDGF-induced ty- 
rosine phosphorylation (8). Exogenously 
added H202  or other oxidant stresses can 
induce tyrosine phosphorylation in several 
cell types (9). We observed similar effects in 
VSMCs. Increasing extracellular [H202] 
from 0.01 to 10 mM resulted in significant 
increases in the total amount of tyrosine- 
phosphorylated proteins (Fig. 1B). To 
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Fig. 1. Production of 
H,O, in cells stimulated 69- , 

j 
with PDGF and the ef- 46- 
fects of H,O, on protein 
tyrosine phosphorylation. 
Primary VSMCs were de- I U 
prived of serum for 3 
days and then incubated +---a 
wth the H202-sensftiwe 
fluorophore DCF ( 7  7 )  and 
imaged by laser confocal microscopy before and 
after treatment with PDGF (5 ng/ml). (A) Time 
course of H202 generation after PDGF stimulation 
in relative DCF fluorescence units (scale of 0 to 256 
units). Values are mean t SEM obtained from 20 or 
more random cells. (€4 and C) Lysates were pre- 
pared from unst~mulated VSMCs or VSMCs stim- 
ulated for 20 min with increasing concentrations of 
H,02 (as indicated). Lysates were first immunopre- 
cipitated with an antibody to phosphotyrosine and 
immunoblots probed with either (B) a phosphoty- 
rosine antibody or (C) an antibody that recognizes 
the p44 and p42 isoforms of MAP kinase (18). 
Molecular sizes are indicated in (B) in kilodaltons. 

achieve the intracellular [H202] seen after 
PDGF stimulation required extracellular 
[H202] in the 0.1 to 1.0 mM range (10). 
This range of extracellular [H202] also ap- 
pears to induce the tyrosine phosphorylation 
of the p42 isoform of mitogen-activated pro- 
tein (MAP) kinase (Fig. 1C). 

We decreased [H202] in VSMCs by in- 
creasing the amount of the peroxide-scaveng- 
ing enzyme catalase. This enzyme rapidly de- 
grades H202 to water and molecular oxygen. 
Infection of VSMCs with an adenovirus that 
encodes catalase (Ad.Cat) resulted in measur- 
able increases in intracellular catalase activity 
(Fig. 2A) (1 1 ). The level of enzymatic activity 
was a function of the multiplicity of infection 
(MOI), and no increase was seen when a 
control adenovirus encoding the Eschenchia 
coli lacZ gene (Ad.$gal) was used. Addition of 
purified catalase to the culture medium result- 
ed in even greater increases in intracellular 
VSMC catalase activity. Because catalase is a 
60-kD protein which in solution forms ho- 
motetramers, it seems unlikely that the pro- 
tein simply diffuses into VSMCs. Indeed, al- 
though loading of VSMCs with catalase by 
addition of the purified enzyme to the medi- 
um resulted in a time-dependent increase in 
VSMC intracellular catalase activity, this was 
not observed in several other cell lines tested 
such as human umbilical vein endothelial 
cells (HUVECs) or HeLa cells (Fig. 2B). Up- 
take of catalase into VSMCs did not occur at 
4"C, suggesting that it is an energy-dependent 
and perhaps receptor-mediated process (1 0). 
The increase in intracellular catalase activity 
was dependent on the concentration of extra- 
cellular catalase (Fig. 2C). At the highest 
extracellular concentration used (3000 U/ml), 
a 72-hour incubation resulted in a -50-fold 

increase in intracellular catalase activity. 
To  show that the addition of exogenous 

catalase did not result in its nonspecific 
binding to the outer surfaces of VSMCs, we 
loaded cells with catalase and then exposed 
them to proteinase K. Although proteinase 
K (1 mg/ml) rapidly inactivated purified 
catalase in solution, the enzymatic activity 
of catalase-loaded cells was resistant to the 
protease (Fig. 2D). We also stimulated 
VSMCs loaded with catalase with PDGF 
and assayed for H 2 0 2  levels. Catalase-load- 
ed VSMCs had a reduced peak level of DCF 
fluorescence after the addition of PDGF. 
The relative peak DCF fluorescence seen 
after growth factor addition was a function 
of catalase concentrations (Fig. 2E). 

We assessed the effect of increased in- 
tracellular catalase activity on PDGF signal 
transduction. PDGF-AB (5 ng/ml) induced 
a rapid increase in tyrosine phosphorylation 
of numerous proteins (Fig. 3A). As catalase 
activity increased, the PDGF-induced stim- 
ulation of tyrosine phosphorylation was cor- 
respondingly reduced in a dose-dependent 
fashion. At the highest amount of intracel- 
lular catalase activity, an amount that al- 
most completely blocks the growth factor- 
induced rise in [H202], stimulation of ty- 
rosine phosphorylation by PDGF was al- 
most completely inhibited (Fig. 3A). 

The addition of catalase even in large 
amounts (3000 U/ml) for prolonged periods 
of time (>5 days) produced no visible effects 
on VSMCs and did not affect viability as 
assessed by trypan blue exclusion, although 
catalase-loaded cells grew at approximately 
half the rate of control cells (10). In addi- 
tion, although catalase-loaded cells had an 
attenuated response to PDGF, when the NO 
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Fig. 2. An increases in intracellular 
catalase activity and its effects on 
intracellular [H,O,]. (A) lntracellular 
catalase activity as a function of 
adenoviral multiplicity of infection 

40 [recorded as plaque-forming units 
(pfu) per cell] (19). A catalase-con- 
taining adenovirus (Ad.Cat, black 
bars) or a control virus encoding 

Extracellular catalase (Ulml) the E. coli IacZ gene (Ad.pgal, 
white bars) was used. (B) Time-dependent intracellular catalase activity after exogenous administration of 
catalase to VSMCs (.), HUVECs (a), and Helacells (A) (20). (C) lntracellular catalase activity as a function 
of exogenous catalase concentration. (D) Effects of proteinase K on catalase activity (21). All measure- 
ments of catalase activity were obtained from triplicate cultures and are expressed as mean ? SEM. B, 
Catalase-loaded cells; a, purified catalase in solution. (E) Representative experiment demonstrating 
relative DCF fluorescence in unstimulated and PDGF-stimulated cells loaded with catalase. Values were 
obtained from 20 or more cells and expressed as mean ? SEM. 

SCIENCE VOL. 270 13 OCTOBER 1995 297 



donor sodium nitroprusside (SNP) was add- 
ed to the medium there was a rise in the 
concentration of cyclic guanosine 3',5'- 
monophosphate (cGMP) equal to or greater 
than that of control cells (Fig. 3B). This 
indicates that the H202 and NO pathways 
are se~arable and that increased intracellular 
catalase does not have a toxic or global effect 
on all signal transduction pathways. 

We next identified specific proteins whose 
growth factor-stimulated tyrosine phospho- 
rylation was regulated by endogenous H202 
release. Stimulation of VSMCs with PDGF 
induced an increase in the amount of tv- 
rosine-phosphorylated p44 and p42 isoforks 
of MAP kinase. As intracellular catalase ac- 
tivity increased, both basal and PDGF-stimu- 
lated tyrosine phosphorylation of MAP kinase 
were inhibited (Fig. 4A). These results were 
not due to changes in the steady-state amount 
of MAP kinase protein in catalase-treated 
cells (Fig. 4B). Qualitatively similar results 
were obtained after adenoviral gene transfer. 
Infection with Ad.Cat (200 MOI) produced 
intracellular catalase activity that was equiv- 
alent to that observed with 72 hours of cata- 
lase loading at an intermediate dose (300 
U/ml) of extracellular catalase (Fig. 2, A and 
C). Such infection with either Ad.pgal or 

Ad.Cat affected cell morphology and in gen- 
eral reduced the responsiveness of VSMCs to 
growth factors (10). Nonetheless, MAP ki- 
nase phosphorylation after PDGF addition 
was inhibited to a greater extent in Ad.Cat- 
infected compared with similarly infected 
Ad.pgal cells (Fig. 4C). In accordance with 
the amount of MAP kinase tyrosine phos- 
phorylation, MAP kinase enzymatic activity 
[as assessed by phosphorylation of a myelin 
basic protein (MBP) substrate] varied in rela- 
tion to catalase activity (Fig. 4D). Consis- 
tent with the reduction in MAP kinase 
phosphorylation and activity, PDGF-in- 
duced [3H]thymidine incorporation was re- 
duced in the presence of increased amounts 
of catalase (Fig. 4E). 

Increased amounts of intracellular catalase 
activity also inhibited the ability of PDGF to 
stimulate chemotaxis of VSMCs (Fig. 4F). A 
-50% reduction in migration was observed at 
the highest level of catalase activity. The 
molecular basis of PDGF-induced migration 
is not fully understood, but it might involve 
the cytoskeletal-associated protein paxillin, 
whose tyrosine phosphorylation is stimulated 
by PDGF in several cell types including 
VSMCs (1 2). The amount of tyrosine-phos- 
phorylated paxillin in PDGF-stimulated ly- 

Fig. 3. Effect of increased catalase ac- A Catalase ( u ~ I )  B 
tivity on VSMC signal transduction. (A) 
lmmunoblots with antibody to phos- 
photyrosine of proteins from unstimu- 
lated (basal) and PDGF-stimulated cells 200- 
treated with various amounts of cata- 
lase as indicated (78). Molecular sizes 

97- 

/ @/  I ?9 '@3f~i1J1 2 15 1 4 
8 l o  

are shown in kilodaltons. (B) Amounts 5  
of cGMP 30 min after stimulation with 69- 

SNP (10 mM) (striped bars) (22). White * O - U L . 2  - 300 3000 
bars, no SNP stimulation. Values are 46- Catalase (Ulml) 
mean 2 SEM from triplicate cultures. 

Basal PDGF 

Catalase (Ulml) 
- 3WO - 30 3003WO D 

C; Basal PDGF <E 40 
* 1 

1 2 3 4  - 
Basal 

PDGF 

Extracellular catalase (Ulml) ~ataiase (Ulml) - Extracellular catalase~~lml) 

Fig. 4. Effect of inhibition of the H,O, response on PDGF signaling. (A) Tyrosine phosphorylation of MAP 
kinase proteins in unstimulated cells (basal) and cells stimulated with PDGF-AB (5 ng/ml) in the presence 
or absence of catalase. Lysates were first immunoprecipitated with an antibody to phosphotyrosine, and 
then the immunoblots were probed with an antibody reactive to p44 and p42 MAP kinase (18). (B) Total 
MAP kinase amounts in whole-cell lysates (10 pg of protein per lane). (C) Effect of infection with Ad.Cat 
(lanes 2 and 4) or Ad.pgal (lanes 1 and 3) (200 MOI) on MAP kinase tyrosine phosphorylation. (D) 
Stimulated MAP kinase (MAPK) enzymatic activity as a function of catalase activity (23). Results are the 
mean 2 SEM obtained from two separate experiments each performed in triplicate. (E) PHIThymidine 
(Thd) incorporation in quadruplicate wells (mean SEM) after stimulation of cells with PDGF in the 
presence or absence of catalase (24). (F) Effect of intracellular catalase activity on PDGF-stimulated 
VSMC chemotaxis (25). Results are from triplicate experiments and are expressed as the number (mean 
2 SEM) of migrated VSMC per high-power field (HPF). (Inset) Amount of tyrosine-phosphorylated paxillin 
in PDGF-stimulated lysates as a function of catalase concentrations (78). 

sates was decreased in cells containing high 
catalase activity (Fig. 4F, insert). 

We tested whether other reactive oxveen ," 
intermediate scavengers would have effects 
similar to those of catalase. When VSMCs 
were treated with the chemical antioxidant 
N-acetylcysteine (NAC), we noted a con- 
centration-dependent reduction in PDGF- 
stimulated DCF fluorescence (Fig. 5A). 
NAC caused a concentration-dependent re- 
duction in PDGF-stimulated tyrosine phos- 
phorylation (Fig. 5B). Similarly, millimolar 
amounts of NAC resulted in a reduction of 
PDGF-stimulated MAP kinase phosphoryla- 
tion and thymidine uptake (10). 

The mechanism by which H 2 0 2  partic- 
i~a te s  in PDGF sienal transduction is un- - 
clear. Exogenously added H 2 0 2  can revers- 
ibly inactivate protein tyrosine phospha- 
tases, and enzymatic activity can be subse- 
auentlv restored bv thiol donors (13). As 
s k h ,  ;he growth factor-stimulated rise in 
[H202] may serve to transiently inactivate 
intracellular tyrosine phosphatases, allow- 
ing for a temporary alteration in the kinase- 
phosphatase balance. The magnitude of the 
rise in intracellular [H202] may therefore be 
an im~ortant determinant of sienal trans- - 
duction. This is supported by three obser- 
vations. Exogenous H 2 0 2  stimulates MAP 
kinase phosphorylation over a discrete 
range (0.1 to 1.0 mM), with 10-fold higher 
or lower concentrations having less effects 
(Fig. 1C). Second, cells loaded with cata- 
lase at a concentration of 30 or 300 Ulml 
behaved similarly to control cells in cert'ain 
assays (MAP kinase activity, [3H]thymidine 
uptake) but not in others (paxillin tyrosine 
phosphorylation, chemotaxis). This sug- 
gests that differing thresholds of intracellu- 
lar [H202] may be required for maximal 
PDGF stimulation of pathways leading to 
mitogenesis or migration. Finally, prelimi- 
nary analysis of other growth factors sug- 
gests that stimulation of VSMC by epider- 

A B 
PDGF NAC(mM) - - 1 10 

PDGF - + + + 

2 40 

a NAC (mM) 
46- - - - 

Fig. 5. Effects of the chemical antioxidant N-ace- 
tylcysteine (NAC) on PDGF signal transduction. (A) 
DCF fluorescence of cells either unstimulated (bas- 
al) or stimulated with PDGF as a function of NAC 
concentration (26'). Values represent mean 2 SEM 
from 20 or more cells. (B) Protein immunoblots of 
tyrosine-phosphorylated proteins from cells either 
untreated or treated with PDGF (5 ng/ml) in the 
presence of the indicated concentration of NAC. 
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ma1 growth factor, fibroblast growth factor, 
or angiotensin I1 all produce a rise in 
[H,Oz] with a correlation existing between 
the  magnitude and duration of a n  increase 
in [H20,]  and the level of tyrosine phos- 
phorylation (10).  These latter observations 
also strengthen the  case that in many ways 
H,O, f~ilfi l ls  the definition of an  intracel- 

L L 

lular second messenger. 
VSMCs appear to be unusual in their 

untake of extracellular catalase. Certain cells 
secrete catalase, and the amount of catalase 
in serum increases in certain disease states 
(14). Thus, growth of VSMCs might be in- 
fluenced by extracellular catalase in vivo. 
Recent epidemiological studies suggest a car- 
dioprotective effect of antioxidants (15). 
Given that PDGF-induced VSMC migra- 
tion and proliferation is thought to  precipi- 
tate early atherogenic changes (16),  one 
nlechanism bv which dietarv antioxidants 
might protect against cardiovascular events 
is by a direct effect o n  H,O,-mediated signal 
transduction in VSMCs. 
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Attenuated Shigella as a DNA Delivery Vehicle 
for DNA-Mediated Immunization 

Donata R. Sizemore," Arthur A. Branstrom, Jerald C. Sadoffi 

Direct inoculation of DNA, in the form of purified bacterial plasmids that are unable to 
replicate in mammalian cells but are able to direct cell synthesis of foreign proteins, is 
being explored as an approach to vaccine development. Here, a highly attenuated Shigella 
vector invaded mammalian cells and delivered such plasmids into the cytoplasm of cells, 
and subsequent production of functional foreign protein was measured. Because this 
Shigella vector was designed to deliver DNA to colonic mucosa, the method is a potential 
basis for oral and other mucosal DNA immunization and gene therapy strategies. 

D i r e c t  DNA-mediated immunization is a n  
exciting new approach to  vaccine develop- 
ment (1  ). W e  chose to exploit the ability of 
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Shigelellae to enter epithelial cells and escape 
the  phagocytic vac~iole as a method for 
directing plasrnid D N A  to  the  cytoplasm of 
the  host cell for protein synthesis and pro- 
cessing for antigen presentation (2) .  T o  
attenuate the Shigella vector, we made a 
deletion mutation in  the  asd gene encoding 
aspartate p-semialdehyde dehydrogenase, 
a n  essential enzyme that is required to  syn- 
thesize the bacterial cell wall constituent 

SCIENCE VOL. 270 13 OCTOBER 1995 299 




