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If the bits of computers are someday scaled down to the size of individual atoms, quantum 
mechanical effects may profoundly change the nature of computation itself. The wave 
function of such a quantum computer could consist of a superposition of many com- 
putations carried out simultaneously; this kind of parallelism could be exploited to make 
some important computational problems, like the prime factoring of large integers, trac- 
table. However, building such a quantum computer would place undreamed of demands 
on the experimental realization of highly quantum-coherent systems; present-day ex- 
perimental capabilities in atomic physics and other fields permit only the most rudimentary 
implementation of quantum computation. 

O f t e n  in science, fruitful results come from 
combining two seemingly ~ullrelated ideas 
into one. Hcre I discuss such a coinbina- 
tion, quantum lnechanics and computers, 
\vlhich together lllake for a new subject, 
iluantum computers, which is beginni~lg to 
def i~le  itself and explore a path, albeit ;I 

rough and rather long one, toward reality. 
T h e  idea of a iluantum computer is simple, 
even if its realization is not.  In a 
fi~nctioning ordinary computer, all of the  
hits always have a definite statc at any 
instant in time, say 01 1100101 . . . In  a 
q ~ l a n t ~ ~ l n  computer, however, ~ v e  will say 
that the  state of the bits can be describcd by 
a wave function, which might look likc 

T h e  coefficients (1, b, . . . are complex num- 
hers, and the  probability that the  computer 
is in the state 01 1100101 . . . is 1 a1 ', that it 
is in the  state 11 1010001 . . . is I hI ', and so 
on. However, descrihing tlhe statc of the 
cornpilter hy a wave f~lnct ion does not  
merely imply the ordinary ~lncertainties of 
life that we use probabilities to descrihe. For 
instance, the phases of the complex coeffi- 
cients n, h, . . . have genuine significance: 
These coefficienrs can descrihe interference 
among different states of tlhe computer, a 
very usefi~l process for c o m p ~ ~ t a t i o n ,  as it 
turns out. T h e  quantum wavc f ~ ~ n c t i o n  de- 
clares that the  computer exists in all of its 
states simultaneously so lollg as that statc is 
not measured: when we do  choose to mea- 
sure it, a particular state will be observed 
with the  prescribed prohahility. 

N o  computer now is very well described 
by such a wavc function; our present-day 
machines accurately obey tlhe laws of clas- 
sical physics. But if solneday the bits of a 
computer are shrunk to atomic scale, then a 
i l~an t i lm description of tlhe bit statc alnd the  
dynamics of a computer may become plaw 

sihle. Fey~nlnan considered this possibility in 
1985 (1 ) and concluded opti~nistically, "it 
seems that the lalvs of physics present n o  
barrier to reducing the size of computers 
~11nti1 the bits are the size of atoms, and 
quantum behavior holds dolninant sway." 
I11 this article, I will first discuss the maill 
basis of Fevnman's ontimism, which is that 
the analog of computer "gates" can be i n -  
plelnented within the realm of some very 
well understood (but difficult) experimen- 
tal physics. Then  I will go o n  to discuss 
what Fevlnlnall did not know, that hv clev- 
erly using quantum dy~lalnics to design 
computations that interfere constructively 
or destructivelv. rcmarkablv nowerful corn- , , , L 

putations like Shor's prime factoring algo- 
rithm 12) hecoine nossihle. T h e  seeds of this 
idea also appeared in 1985, in a paper by 
Lkutsch (3). Lkutsch realized then that 
iluantum nlechanics strikes down one of the 
most cherished principles of theoretical 
c o m p ~ ~ t e r  science, that of a unique compu- 
tational coniplexity for every illathelnatical 
problem. Going back to tlhe work of T ~ ~ r i ~ l g  
(4). it was believed that the answer t o  the ~ , ,  

q ~ ~ e s t i o n  of whether any given probleln 
could be solved in a time that lvas ~ o l v n o -  

L ,  

lnial in the size of its inputs, or greater than 
polynoinial, was independent of the physi- 
cal apparatus ~lsed to perform the colnp~lta- 
tions. This illdeed seems to be true for all 
compilters operating on the  of 
classical plhysics, but iluantum computers 
call solve in poly~lonlial time problems that 
have no  polynomial-time solution o n  any 
classical machine. 

Building Blocks of 
Quantum Logic 

In  this section I offer a bottom-up view of 
holv a quantum computation might he re- 
d11ced to practice, eniphasizillg that,  a t  least 
in its first few steps, the  required operations 
correspond to very well k11ow11 procedures 
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bit) (5), a quantum system that,  like a n  
ordinarv comnuter bit. has t ~ v o  accessible 
states but can, unlike an ordinary computer 
hit, exist in any s~lperposition of those two 
statcs. Many two-state systems are knolvn in 
physics, hut throughout this article I will 
use as an  example of this the spin-up (la- 
beled I I ) )  and spin-down (labeled 1 0)) 
statcs of a spin-I/? e l e ~ n e ~ l t a r ~  particle likc 
a n  electron or a nroton. As in Boolean 
logic, we will build up operations in quan- 
tum logic using a small collectio~l of logic 
gates, in which the states of input clubits 
(one or t ~ v o  qubits in the exa~nples given 
below) are tra~lsfor~ned in a specified fash- 
ion, leaving the quhits in a particular output 
state. In accordance with the laws of the 
auantum mechanics of isolateii svstems. we 
will take the allowable transfor~nations to 
he unitary operations describing the time 
evolution of the  input quantum state. 

As an  example, the  quantum analog of 
the  one-bit N O T  or inverter gate can be 
i~np le~nen ted  with spectroscopic techniques 
that have been well known in nlhvsics for 

L ,  

over 50 years. As allnost any elementary 
tcxthook of iluantum lnechanics shows ( 6 ) ,  
the time evolution of a s~in-1/2 state call be 
accurately controlled by the judicious appli- 
cation of t ime-de~endent  lnaenetic fields. 
A n  inversion of tlhe statc, in ~vh ich  spin-up 
evolves to spin-down and vice versa, is ac- 
complished hy what is known as a tipping 
pulse. Suppose that we have a n  isolated spin 
in the nresence of a colnhination of a sta- 
tionary and a time-dependent magnetic 
field, described by the Halniltonian 

Hcre, ~ I J -  is the  lnagnetic dipole inolnent 
of the  particle (IJ- = efilmc, in  centilneter- 
grain-second units, where e is the  electron 
charee. f i  is Planck's colnstant divided bv 
2 ~ ,  m is the  particle Inass, and c is the  
speed of l ight),  the  static magnetic field 
H,, is alone the  7 axis, and the  ac lnaenetic 
fi i ld pulst 'with amplitude H,  is alol;g tlhe 
y axis; o, and u, are the  Pauli spin matri- 
ces, and P ( t )  is the  pulse e ~ n v e l o ~ e  f ~ l n c -  
t ion, sholvn as a square pulse in Fig. 1. T h e  
time ( t )  evolution under this Halniltoniall , , 

is discussed fully in lnalny places [for ex- 
ample, (6)]. D ~ ~ r i n g  a tipping pulse, the  ac 
field is in resonance with the  energy dif- 
ferellce be t~veen  the  two spin statcs: f iw = 

~IJ-H, Under  this condition, the  2 X 2 
~lni tary  matrix descrihing the  time evolu- 
t ion of the  spin in the  spin-up-spin-dow~~ 
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basis, fro111 the  beginning t = 0 t o  the  end 
t = T of the  pulse, simply has the  form of 
a two-dimensional rotation matrix (except 
for phase factors) 

, , w ~ j z  0 ' cosnT/2 - s innT/2 

'' = ( 0 i.?""') ' (s innT/?  cosnT/2 

(3) 
Here, 0 = gkHl/4fi is the Rabi frequency; 
because both and T are at the disposal of 
the experimentalist conducting the  tipping- 
pulse procedure, any angle of rotation may 
be obtained. For a 180" tipping pulse, when 
RT = T ,  this time evolution acco~~lplishes 
the N O T  operation: If the system is initially 
in the 10) state, it ends up in the 1 1) state, 
and vice versa. Of course this classical op- 
eration has the nonclassical feature that 
there are definite nhase factors associated 
with the  time evolution. They can in gen- 
eral be chosen to  be unity, although because 
usually o >> 0, setting these phases is 
probably the  most difficult feature of the  
tipping-pulse unitary transformation to 
control accurately. 

There is nothing special in this spin- 
resonance operation about the  tipping all- 
gle T ;  a whole continuous (three-parame- 
ter) family of operations, corresponding to  
any S U ( 2 )  matrix (7), can be performed. It 
is this generalization that is the  essence of 
q u a n t ~ ~ m  computing and gives it its great 
potential power. 

For a coupled two-spin system, there is a 
similar spin-resonance protocol (&lo), fa- 
miliar to the physics of double resonance, 
which can perform the exclusive-or (XOR) 
function (1 1 , 12).  T h e  XOR of two bits 1s 
s i m ~ l v  the  sum of their two Boolean values. 

& ,  

modulo 2. T h e  only new ingredient that is 
needed to  accomplish the XOR by spin- 
resonance techninues is a nonzero Harnil- 
tonian coupling together the  two spins. T h e  
protocol is easiest to explain if this coupli~lg 
has the  form of a n  Ising interaction (9 ) ,  so 
that the  Hamiltonian takes the  form 

although a n  XOR protocol can be cotl- 
structed n o  matter what the form of the  
coupling term between the two spins a and 
h. Here, X ( t )  is the time-dependent Ham- 
iltonlan to be prescribed by a tippitlg-pulse 
protocol. Without the  application of these 
tipping pulses, this Harniltonian simply de- 
scribes a stationary quantum system with 
exactly four energy eigenstates (Fig. 2A).  
Because of the spill-spin interaction, the  
energy spacing between every pair of levels 
in this four-level spectrum will generically 
be distinct. This permits a tipping-pulse 
protocol in which specific individual reso- 
nances can be selected. Thus, if a pulse is 

Fig. 1. The action of the NOT or inverter gate. The 
Hamiltonian describing the magnetic-resonance 
manipulation that results in the NOT operation is H 
= gk[H,% + H, (t )cr,l. (A) The time dependence 
of the magnetic field of the tipping pulse. in this 
example a sinusoid at frequency w multiplied by a 
square function P(t) going from time t = 0 to t = T .  
(B) Energy level diagram for the qubit, The tipping 
pulse is tuned to be in resonance with the energy 
gap between the two stationav energy eigen- 
states 0 )  and 1 ) .  (C) State evolution diagram, 
showing the evolution paths of the two computa- 
tional basis states. The T in this diagram denotes 
that on the path indicated, the state acquires a 180' 
such that wT = 0 and CLT = n).  

applied a t  time t ,  whose ac frequency is 
tuned to ol [the energy spacing betwee11 
the first and third energy levels in this 
spectrum (Fig. 2A)] and the tipping angle is 
chosen again to be T ,  then at the  end of the  
pulse at time t2, the  desired XOR will be 
complete. Tha t  is, by flipping the  state of 
the a spin if the h spin is I) ,  and doing 
nothing otherwise, this pulse leaves the fi- 
nal state of spin a in the XOR of the  initial 
states of a and b, while leaving h in its 
original state, as summarized by the  first two 
columns of the  truth table in Fig. 2C. A 
gate symbol for this XOR operation is 
shown in Fig. 211. 

T h e  XOR protocol is very closely related 
to procedures invented long ago in the field 
of resonance spectroscopies (1 3). In  1956, 
Feher introduced a procedure for polariza- 
tion tratlsfer in electrotl-nucleus double res- 
onance (ENDOR),  which contains the  
XOR ~ r o t o c o l  iust discussed. In  Feher's 1111- 

tial experiments, the  a spin was carried by 
the outermost unoaired electron of a P do- 
pant in crystalline Si, and the  h spin was 
carried by a nearby 29Si nucleus (hence the  
name of the technique). T h e  ENDOR and 
XOR protocols differ only in that Feher's 
procedure used a second T pulse applied at 
time t, at a different frequency w, resonant 
with the transition between the  first and 
second energy levels in the  spectrum in Fig. 
2A. A t  the end of the second pulse, a t  time 
t,, the ENDOR operation is complete. T h e  
truth table for the  ENDOR protocol is the  
first and third colunlns of Fig. 2C; like the 
one-pulse protocol, it leaves the  a spin ( the  
P electron spin in Feher's experiment) in 
the XOR of the initial states of a and b. In  
addition. it leaves h in the  initial state of a. 
which is the polarization transfer that was 
of interest to Feher; for many purposes in 
physics, chemistry, and biology, it is highly 
desirable to  move the  spin state of a n  elec- 
tron onto  a nearbv nucleus. T h e  fact that 
this procedure also performs a n  interesting 
loglcal function, XOR, was not previously 
noted by ENDOR spectroscopists. 

In  either the one- or two-qubit gates, 
high-precision methods from experimental 
physics are required. It is necessary that the 

phase shift (assuming the parameters are chosen 

timing of the tipping pulses be precisely con- 
trolled, in order that the acc~unulated phase 
oT be zero (or some other chosen 
value). For the two-uubit onerations, it is 
also necessary that the interaction Hamilto- 
nian that determines the energy level split- 
tings in the four-level spectrum be precisely 
known and controlled. In  addition, the fre- 
quency content of the T pulses should be 
tailored in such a way that a pulse that 
nominally has ac frequency ol has no  small 
residual undesirable comnonent at w,. This 
requires a careful choice of the pulse shape 
( in  general, the square-pulse form in Fig. 1 A  
would be undesirable). Many of these issues, 
especially those of pulse shaping and fre- 
quency stability, have been considered ex- 
tensively in the science of magnetic reso- 
nance (1 4). 

Fig. 2. The acton of the two-qub~t XOR gate. (A) 
Energy level dagram for the two qublts, showng 
the four statlonary states of the Hamlltonian in Eq. 
4. The states are labeled by the two qubt values of 
the two spins lab). (B) The trne evolution path- 
ways of the quantum states under the action of 
the tipping-pulse protocol described in the text. 
Again, then 's  denote 180" phase shfts along the 
ndcated pathways. (C) The truth table summariz- 
ng the result of the time evouton of the gate from 
the initial state (time t,) to after the first (tme t,) and 
second (time t,) tlpping pulses. (D) The gate nota- 
tion used for the XOR operation, obtained by us- 
ing just the first of the two pulses of the ENDOR 
protocol. The resutng gate leaves qubit b un- 
changed and leaves a in the state given by the 
sum of a and b ,  modulo 2. 
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Fig. 3. Constructon of the AND 
gate. (A) A notat~on for the 
three-qubt AND operaton, and 
a gate constructon of AND us- 
ing three XOR gates and four 
single-qubit rotations. The n/4 
gate corresponds to the opera- 
t~on n Eq. 3, with oT = 0 and 
CLT = d4. When the work qubit 
b IS intally set to / O), t ends up 
n the state lac),  (B) The full 
truth table of the three-qubit 
AND gate. (C) The state evou- 
tion dagram for the AND gate, 
showng the intermedate state 
along selected pathways at the 
times shown in (A). A new fea- 
ture appears here: For some n -  
put states, the intermed~ate 
state is a su~er~osition of two 
d~fferent computational path- Time 1 2 3 4 
ways. The final state IS definite agar  because construct~ve Interference permits only one of the possible 
outcomes (the pathways that Interfere destructively at the last step are dashed) 

Quantum Circuits 

Virtually any unitary operations on sets of 
qubits can be thought of as the universal gates 
of quantum computation (15, 16). What this 
means 1s that any unitary transformation in 
the 2"-dimensional Hilbert mace snanned bv 
n qubits can be decolnposed exactly (1 2)  into 
a set of these universal operations applied 111 

seuuence to the n aubits. The two onerations 
introduced above, one-bit rotations and the 
two-bit XOR, possess this universal property 
(1 2). Thus, even though it is beyond present- 
day experimental capabilities, we could build 
up any quantum cornputation (which includes 
all ordinary Boolean computations, and more) 
by applying these basic operations in sequence 
to selected qubits or pairs of qubits to build up 
a "circuit" of arbitrary complexity. 

As an example of the use of this reper- 

t o m  to efficiently construct a useful quatl- 
tum computation, the cotlstruction of an 
AND gate is shown in Fig. 3 (1 2, 17). It 
involves three bits because the input bits a 
and c are left unchanged during the opera- 
tion; the work bit h is set to 0) initially and 
is left in the state (a  AND c) at the end. 
(The AND is the product of the two blt 
values.) It is well known in "reversible" 
logic (1 8, 19) that it is necessary to intro- 
duce a work bit because the AND operation 
by itself is irreversible; the same is true in 
quantum computing because all unitary op- 
eratiotls are reversible (that is, have an 
inverse). The AND gate in Fig. 3 A  requires 
three XOR gates, in each case with the 
result placed In the h bit, along with four 
one-bit gates, all of which are just '45" 
tipping pulses. This particular implementa- 
tion of the AND has phase factors that are 

Fig. 4. Cartoon ~llustrat~ng the k~nd 1 1 1 1 1 1 1  
of atom~c-scale englneerlng that 
would be requ~red to Implement 
quantum computat~on w~th an 
AFM It IS ~mag~ned that an un 
doped crystall~ne S t ~ p  IS approach 
Ing a crystallhne SI surface The 
qub~ts are carr~ed by the proton 
spn of the H atom at the very end of 
the t ~ p  and the H atoms arranged 
perodcally along the surface nter- 
actons between the t p  qub~t and 
the other qub~ts can be turned on 
and off by the physcal approach of 
the t ~ p  to varlous s~tes  on the sur I,-, 
face perm~tt~ng a gate protocol lhke , 
the one of F I ~  3A to be carred out 
By arranging for all the surface dan- 
g n g  bonds to be saturated one 
can ellm~nate undesirable qub~ts 
carr~ed by stray electron splns 
Stray qubts carr~ed by nuclear spns are kew~se avoded by permttng only spn-zero  soto opes In the 
vcn~ty of the H atoms The t p  qub~t can be made spectroscop~cally dstnct by bond~ng t to a dfferent 
atom producng a chemca sh~ft whch can be useful n dev~s~ng selectve magnet~c resonance protocols 

all unity except for one: The state 110) is 
trarsforrned to the state - 110). In manv 
cases this change of phase nlay be accept- 
able for the operation of the gate (for ex- 
ample, if it is known that the input qubit h 
will always be set to 10)). If it is necessary 
that all the ~ h a s e  factors be unitv, then the , . 
ilnplelnentation is solnewhat more compli- 
cated, requiring six XORs and eight one-bit 
eates 112). ', ~, 

Diagrams such as Fig. 3 A  give a decep- 
tively silnple impression of the ease with 
which elementarv uuantun-mechanical , L 

manip~~lations might be assembled to per- 
form a quantum computation. In the imple- 
mentation of the AND gate, it is ilnplied 
that we know how to "wire up" three XORs 
and a number of other gates. But consider 
what this "wiring up" means: Whlle the 
XOR connecting qublts b and c is in oper- 
ation, spins h and c should have some pre- 
scribed interaction (say, the lsing coupling 
of Eq. 4),  whereas the couplings between a 
and h and between a and c should be zero. 
When the second XOR is in operation, the 
microscopic couplings should be rearranged, 
with the a-b coupling being nonzero. This is 
not a colnmonplace happening, and it cer- 
tainly was not envisioned by Feher or any 
magnetic resonance experimentalists in the 
1950s. 

This "interconnection" probleln can 
~robablv be solved, but it is one whose 
solutioi involves the most speculative and 
uncertain features of the quantum computer 
~mplelllet~tatiot~s suggested to date. The ge- 
ilanken apparatus in Fig. 4 shows a possible 
future device that mieht solve the intercon- " 
nection problem for a quantum computer. It 
depicts the tip of a specifically designed 
atomic force microscope (AFM) (20) ap- 
proaching the surface of a crystal from 
above. It is lmaeined that both the tir, and " 

the surface are constructed with the follow- 
ing criteria in mind: ( i )  The spills of the 
H-atom nuclei. one of them olaced at the 
very end of the tip and the others placed 
periodically on  the surface, serve as the 
qubits. (ii) All the electrolls are tied up in 
bonds, both in the bulk (crystalline Si is an 
insulator) and on  the surface. This is done 
so that flipping an electron spin, or trans- 
porting it, is not an available quantum de- 
gree of freedom because such excitations 
require too much energy. (iii) Likewise, all 
other nuclei in the svstem have a snin of 
zero, so that only the H-atom proton spins 
are available for interaction. (I will say 
Inore at the end of this article about the 
undesirable consequences of stray quantum 
degrees of freedom in a quantum computer, 
principally concerning their role in the loss 
of quantum phase coherence.) (iv) Like any 
AFM, this one should be capable of moving 
the atom at the tip into contact with any 
aton1 on  the surface at will. This property is 
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the one that accomplishes the desireci ill- 
terconnection action: W h e n  the first XOR 
in  Fig. 3A is to he performed, the micro- 
scope tip should he parked in contact \\lit11 
the H atom to the right o n  the surface in 
Fig. 4; for the second XOR, it should he 
parked in contact with the H atom o n  the 
left, and so on. Present-day AFMs cannot 
vet satisfy all of these desien criteria. H o w  
ever, inciedihle strides ha;e heen made in 
the last few years in using AFMs to do 
spin-resonance inanipulations and measure- 
ments 011 slnall groups of spins (20,  21). 

Peter Shor's Prime Factorization 

T h e  A N D  gate constructed in Fig. 3A per- 
forms a classical Boolean operation. Still, its 
implementation is very nonclassical, in a 
\\lay that is a prototype for the really pow- 
erful procedures (for prirne factorization and 
the like) that are ~lnique to quantum com- 
putation. Figure 3C shows how the various 
illput states of the  A N D  construction of Fig. 
3 A  evolve in time throueh three of its 
stages to the final answer (we only follow 
the computations for \ \~hich the work cluhit 
h is set to 10)). I11 any classical computa- 
tion, each of these computations would fol- 
low a single, definite pathway in time from 
the heginning of the computation to the 
end, hut in quantum computation, the com- 
putation can he split up into several ( in  this 
case just two) pathways that, hy the iluan- 
tun-mechanical principle of superposition, 
evolve in time in parallel. Because these 
pathways carry Jefinite phases (note in the  
figure the points at which a 180" phase shift 
is introduced by the time evolution), these 
co~nputations can, upon recombining at the 
end, interfere either constr~lctively or cie- 
structively to produce definite outcomes. In 
the example shown, 1000) evolves in time 
to itself, as recluired hy the A N D  truth 
tahle, hecause the two comnutational vath- 
ways arriving a t  1000) at t i e  end havk the 
same phase ( 0  along one path, 271 along the  
other) and so interfere constructively. T h e  
incorrect outcome, @lo) ,  u~h ich  the corn- 
putational pathu~ays also reach, is preventeci 
hecause the  phases are opposite ( 0  and 71) 
and the interference is destructive. If the 
nhases were not saref~lllv controlled. then 
;he incorrect outcome wduld occur half the 
time. It is by this means that a quantum 
coinpi~tation, despite h e q g  in a very com- 
plex, lndeterrninate computational state in 
its intermediate stapes. can he in a definite. " ,  

cornp~~tationally usefill state at the end. 
It is this general schema for quantum 

computation, first introduced hy Deutsch 
(3),  that is used to great effect in Shor's 

perform prime factorization. This diagram is 
a generalization of the  one used to illustrate 
the  operation of the A N D  in Fig. 3A,  in 
that it shows the evolution pathways of the 
coinputational states as a f ~ ~ n c t i o n  of time 
though the factoring procedure (time runs 
downward now, rather than to the right). 
As Deutsch and Jozsa envisioned in earlier 
work (22) [see also (23)], Shor divides the 
quhits of the  colnputer into two registers 
laheled (somewhat misleadingly) input and 
output. T h e  ilumher of hlts in each register 
needs to he of order the nurnher of hits in 
the integer to he factored; for argument's 
sake ( to  he very ainhitious), suppose that 
hot11 registers contain k = 1000 hits. T h e  
rectangles in Fig. 5 depict tlhe members of 
the entire Hilhert space of the input and 
output hits. This diagram is of necessity 
highly schematic hecause the  climension of 
this Hilhert space is huge: 2'"' for both the  
input and output registers. I11 fact, it is this 
exponential scaling of the size of the Hil- 
bert space with respect to the nurnher of 
~larticles in the svstern that is one of the 
ieasons for the great potential power of 
q ~ l a n t ~ l m  c o n p ~ ~ t i r ~ g ;  unitary inatrices can 
easily he constructed and multiplied o n  a n  
ordinary digital computer, hut their size 
cannot he exnonential in the  numher of 
colnponents of that computer (24).  

T h e  shading in Fig. 5 indicates the  in- 
stantaneous state vector throuehout the 
three main stages of Shor's computation. 
T h e  first few stens are verv simnle: T h e  
starting state is flxed to he all zeros (all spins 
d o u ~ n ) .  (The  classical input, that is, the  
integer hT to he factored, does not enter the 
procedure yet.) In stage 1, the  cornputation 
is split up into 2"" pathways, so that the  
wave function of the  system becomes a 
linear superposition of all possible states, 
with equal phases, of tlhe input register x. 
This highly no~nclassical computation is 
very easy to prescribe spectroscopically: A 

90" tipping pulse applied to each input spin 
places the wave function of the system in 
the desired state. 

Stage 2 of computation is less trivial, 
requiring a single evaluation of a classical 
Boolean f~lnct ion 

T h e  value of this function is  laced In the  
output register y. Here x is the value of the 
input register considered as a n  integer in 
binary representation, N is the integer to he 
factored, and the constant c is any other 
integer that has n o  prirne factors in corn- 
rnon with hT: mod hT indicates modular 
arithmetic, in which the result is the  re- 
mainder after division hv N. Because of the 
superposition principle, a single evaluation 
of f(x) ohtains every value of the output, 
given that tlhe input is a superposition of all 
possihle values. T o  evaluate f(x) o n  a quan- 
~ L I I ~ I  computer, it should first he "compiled," 
in the usual classical sense, so that f(x) is 
written as a sequence of operations of prirn- 
itive Boolean f ~ ~ n c t i o n s  like N O T  and 
AND.  T h e n  one would implement this se- 
quence of NOTs  and ANDs as a quantuln 
procedure, for example, in a sequence of 
magnetic-resonance tipping pulses. 

I will not  give a complete explanation of 
why the parallel evaluation of this particu- 
lar f(x) is usef~ll for prime factorization. This 
reuuires some straiehtforwarci technicalities " 
of nurnher theory; good disc~lssions nlay he 
f o ~ l ~ l d  in the  original literature (2 )  and in 
some recent reviews (4).  In  a nutshell, the 
important property of f(x) is its periodicity 
with respect to x. If hT is a prime number, 
then the period of f(x) is N - 1, hut if N is 
composite, the  of f(x) is shorter, and 
knowledge of this period leads, after a 
straightforward (classical) calculation, to 
one of the  nrirne factors of hT. 

Shor noted that a quantum computer is 
very well adapted to finding the periodicity 

Fig. 5. A schematic depction of the 
time evolut~on pathways In Shor's 
prime factor~ng procedure. The 
computational states appearing In 

00 1. the wave function at each selected 
x ~nstant in time are indicated by the 

fled rectangles. A few of the path- 
ways are sketched out. Most of the 
pathways in the flnal step (dotted 
llnes) interfere destructively, with 
only a few (solld llnes) interfering 
constructively. 
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of J(x), by means of the  execution of a 
Fourier transform o n  the input register x 
(not  the  output register y ) ;  this is the third 
and final stage of computation depicted in 
Fig. 5. T o  be precise, the Fourier transform 
takes a wave f ~ ~ n c t i o n  of the form 

and evolves ~t in time so that it ends up as 

or in words, the final wave function coeffi- 
cients are the discrete Fourier transform of 
their initial values. Shor observed that this 
transformation is a unitary operation and 
showed that it could be performed in a num- 
ber of steps polynomial in k, the number of 
b ~ t s  in the inout reeister (which is in turn of " 

order the number of bits needed to  represent 
N, the number to be factored). Coppersmith 
(25) found a simple, explicit, robust gate 
construction (Fig. 6) for implementing the 
radix-2 Fourler transform of Ea. 7. It is a 
straightforward transcription of the steps in- 
volved in performing the Cooley-Tukey fast 
Fourier transform (FFT), with the individual 
"twiddle factors" of the FFT implemented by 
the two-qubit X, gates shown. This proce- 
dure is very similar to the first step of Shor's 
computation, which just conslsts of the 90" 
tipping pulses applied to each bit in turn, 
w ~ t h o u t  the twiddle-factor gates. Copper- 
smith noted that this seauence of onerations 
takes on the order of k2 steps. 

This final FFT step is a very effic~ent 
way of obtaining the period of f(x),  In the  
same way that the scattering of x-rays from 
a crystal is a good way of ob ta ln~ng  its 
pc r~od ic~ ty ;  a f ~ n a l  measurement of the val- 
ue of the  register x is a measurement of the 
position of one of the "Bragg peaks" of this 
scattering process [although this measure- 
ment  onlv obtains some unknown multiole 
of the  fuidamental period of f(x),  there 'are 
again some straightforward number-theo- 

retic considerations that permit the  funda- 
mental period itself to be deduced reliably 
from this measurement]. Shor's procedure 
manages to be useful in the  same way as the  
A N D  gate implementation; despite being in 
an  indefinite, superposed computational 
state through the middle parts of the  com- 
putation, destructive mterference forbids al- 
most all possible outcomes (just as in Bragg 
scattering, diffraction into almost every di- 
rection is forbidden), leaving the  system in 
a n  (almost) definite, and thus computation- 
ally useful, state. Note  that the  diffraction 
process described here differs in a crucial 
respect from the diffraction of classical 
waves: the  size of the  diffractlon grating 
used In Fig. 5 grows as an  exponential of the 
size of the  number to be factored. It is for 
this reason that  classical wave optics cannot 
efficiently solve this problem. 

A final tally of the number of steps 
required to perform Shor factoring reveals 
why this result has caused a stlr in the  
computer science community. T h e  result is 
polynomial in k, going as k3 for small k and 
asymptotically approaching k2 for large k. 
After many decades of effort, the  best algo- 
rithms for factoring o n  an  ordinary Boolean 
computer are nonpolynomial, scaling like 
e ~ ~ ( a k ' ~ ' ) ,  where a is some constant (4,  
26).  Although it is not  known whether this 
particular problem might ultimately yield to 
a polynomial-time solution o n  a n  ordinary 
computer, Shor's result has made computer 
scientists realize that the  algorithmic ap- 
proaches available on a quantum computer 
are much more powerful than ordinary 
Boolean logic, and active work is under way 
in more fully defining the power of quan- 
tum mechanics to solve important mathe- 
matlcal problems. 

The Decoherence Problem 

Even though the  formal results o n  the great 
capabilities of quantum computation are 
perfectly in accord w ~ t h  the  laws of quan- 
tum physics, there are still several very fun- 
damental physical obstacles that need to be 
overcome before quantum computation can 

Fig. 6. The gate array introduced by a 

Coppersmith (25) for performing the T 
Four~er transform (step 3 of the Shor 
procedure In F I ~  5) The matr~x un- 

- 
tary operators correspond~ng to the 
two types of quantum gates used In a 

the f~gure are shown The two-qub~t 
X,, gate may be mplemented by a d--fl x3 x2 
s~mple comb~nat~on of XORs and 
one-qubit gates (12). The X,, gate e 

acts symmetr~cally on t s  two qubits. 
The process can be extended for 
inputs beyond a through e .  

xn 

be performed in the laboratory. These ob- 
stacles will make the ~ a t h  to constructine a 

u 

quantum computer a long and arduous one, 
and one that will not  be traversed before 
many years have elapsed. Two principal 
obstacles have been identified: the error 
correction and the  decoherence 
problem. I will not discuss error correction, 
which may ultimately be very difficult in 
auantum comoutine because it seems that 

L " 
slight imperfections in the  implementation 
of T pulses and other elements would ulti- 
mately lead a calculation off track (27).  
Other  authors have explored the diff~culties 
here (28,  29) and are beginn~ng to  define 
the rudiments of an  error correction scheme 
(30). For the Shor algorithm, small errors 
can be defeated simply by runnlng the  com- 
putation repeatedly until the  correct answer 
is obtained-prime factors can easily be 
confirmed by multiplication. (Actually, 
Shor's algorithm, like many other useful 
ones, is not  guaranteed to give a correct 
answer in one run, even in the absence of 
errors.) 

It seems to be the  decoherence ~ r o b l e m  
that makes even the  initial investigation of 
modest-sized quantum computations diffi- 
cult. Decoherence is this: If the  quantum 
system is not perfectly isolated from ~ t s  en- 
vironment, the  quantum dynamics of the 
surrounding apparatus will also be relevant 
to the  operation of the quantum computer, 
and its effect will be to make the  computer's 
evolution nonunitary. Because computa- 
tional pathways separated at the  beginning 
of the  computation only recombine at the  
very end (Fig. 5 ) ,  loss of phase coherence 
along these paths will spoil the constructive 
and destructwe interference that is essential 
for quantum computing; therefore, the  de- 
coherence time tm needs to be much longer 
than the expected running time of the  com- 
putation. Fortunately, the decoherence 
problem is one for which continuing ad- 
vancement in the experimental art is likely 
to  make a difference. Improving the  isola- 
t ion between the auantum svstem and ~ t s  
environment, which accoApanies the 
steady advance of the technology used in 
high-precision quantum physics experi- 
ments, results in a lengthening of tm and a 
growing possibil~ty to  useful quan- 
tum computations. 

Table 1 gives a survey of the current 
state of the  art for t+'s in a w ~ d e  varlety of 
two-state quantum systems (16).  Because of 
the great disparity of energy scales, the 
available speeds range over 16 orders of 
magnitude. There is also a great disparity in 
the present technological capability for ap- 
plying tipping pulses to each of these sys- 
tems; the  gamma-ray spectroscopy that 
would be needed for nlanipulating the 
Milssbauer nucleus does not exist, whereas 
the  high-precision radio-frequency technol- 

SCIENCE VOL. 270 13 OCTOBER 1995 



ogy for dolng tipping pulses in nuclear mag- 
netic resonance (NMR)  1s very mature. 
4 1 ~ 0 ,  the technology may not allow the  
potential speed of any given qubit to be 
fully ut~llzed: For example, in the recent 
proposal for ilnpleinent~ng quantum com- 
putation with a llnear ion trap (31),  the 
switching time would be lop '  s rather than 
10-l4 s because it 1s limited by the qubit 
encoded in the  quantized vibrations of the 
ions in the  trao. 

There 1s also a great disparity in the de- 
coherence times available 111 these systems 
(Table 1). T h e  ratlo of the switching tlmes 
to the decoherence times 1s an important 
figure of merit for quantum computation, 
being the number of steps of computation 
that might be performed before phase coher- 
ence is sooilt. Unruh's 132) calculations in- ~, 

dlcate that to perfornl conlputations like 
Shor factoring, this figure of merit should be 
something like the cube of the nun~ber  of 
bits in the integer to be factored. If the 
obiect is to  factor a lo4-bit number (a  task 
believed to be beyond the capability of any 
conceivable classical computer), it is evident 
that most of the present-day qubits are inad- 
equately phase coherent to do the job. Nev- 
ertheless, several ex~er iments  have now 
been done in which actual, rudimentary 
quantum logic gates have been constructed, 
one involving optical microcavities (33) and 
another using trapped ions (34). T h e  tech- 
noloev used In this last example is the one ", 
that is under development for the next gen- 
eration of atoinlc clocks (35). This is s~gnif- 
icant because quantum computers require 
long dephasing times in addition to long 

Table 1. Important times for various two-level 
systems in quantum mechanics that might be 
used as quantum blts, including prospective 
qubits ranging from nuclear physics, through 
atomic, electronic, and photonic systems. to eec -  
iron and nuclear spins. The time tSwi,, is the min- 
imum time required to execute one quantum gate: 
it is estimated as hlAE,  where AE 1s the typical 
energy splitting in the two-level system: the dura- 
tion of a a tipping pulse cannot be shorter than 
this uncertainty time for each system. The phase 
coherence time as seen experimentally, t,,,. is the 
upper bound on the length of time over which a 
complete quantum computation can be executed 
accurately. The ratio of these two times glves the 
largest number of steps permitted in a quantum 
computation using these quantum blts. See (16) 
for the orgnal references. 

Mossbauer nucleus 
Electrons: GaAs 
Electrons: Au 
Trapped ions: In 
Optlcal microcavity 
Electror, spin 
Electron quantum dot 
Nuclear spin 

decoherence times. Dephaslng, loss of the 
accuracy of the phase factors of Eq. 3 because 
of the drift of the clock, must also be kept 
very small 111 iluantum computation. 

Outlook 

It is evident from this survey of the current 
state of the art in quantum experimental 
physics that the construction of quantum 
computers is presently 111 the most rudimen- 
tary stage, and  that to even think about a 
procedure like Shor factorization, which 
might require millions of operations (14) on 
thousands of qubits, might be absurdly pre- 
mature. However, even a much more inodest 
quantum computer will permit the study of 
effects that are of great scientific interest. For 
example ( l o ) ,  even a few bits of quantum 
coinputation will be very useful in perform- 
ing so-called Bell measurements, which 
could be used to implement quantum tele- 
portation (36),  in which an  unknown quan- 
tum state can be transported to a reinote 
location. A t  perhaps the 10-qubit level, a 
quantum computer becomes capable of per- 
forming Schumacher's quantum codlng (5), 
which would be of interest in the implemen- 
tation of efficient quantum cryptography 
(37). And at perhaps the 100-qubit level, a 
quantum computer becomes an  efficient re- 
peater for a noisy (that is, partially deco- 
hered) quantum cryptographic link (38). I11 
this application, it might become possible to 
create Einstein-Podolsky-Rosen pairs (36) at 
very remote locations, permitting new, strin- 
gent tests of the validity of the quailtun 
theory. A t  this time, both physicists and 
computer scientists are actively searching for 
new ways to use quantum computers. 

T h e  quantum-gate approach outlined 
here appears to be a very arduous one for the 
ultimate iinplementation of a quantum com- 
puter, but other paradigms, which might ul- 
timately provide an  easier path to implemen- 
tation, are being explored. For example, it 
might be that the natural time evolution of 
some simple quantum system, like the quan- 
tum states of a crystal, might itself perform 
some useful computation; preliminary work 
on this sort of "quantum cellular automaton" 
has been done (9 ,  39). Perhaps our present 
understanding that stringent isolation is a 
requirement for quantum computation is un- 
true; it may be that the time evolution of the 
density matrix of an  open quantum system is 
also a powerful computational tool, or that 
new approaches to error correction (30) will 
let noisy q ~ ~ b i t s  compute. In  any case, the 
next few years should be interesting ones for 
the quantum computer. 
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