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Quantum Computation

David P. DiVincenzo

If the bits of computers are someday scaled down to the size of individual atoms, quantum
mechanical effects may profoundly change the nature of computation itself. The wave
function of such a quantum computer could consist of a superposition of many com-
putations carried out simultaneously; this kind of parallelism could be exploited to make
some important computational problems, like the prime factoring of large integers, trac-
table. However, building such a quantum computer would place undreamed of demands
on the experimental realization of highly quantum-coherent systems; present-day ex-
perimental capabilities in atomic physics and other fields permit only the most rudimentary

implementation of quantum computation.

Often in science, fruitful results come from
combining two seemingly unrelated ideas
into one. Here [ discuss such a combina-
tion, quantum mechanics and computers,
which together make for a new subject,
quantum computers, which is beginning to
define itself and explore a path, albeit a
rough and rather long one, toward reality.
The idea of a quantum computer is simple,
even if its realization is not. In a properly
functioning ordinary computer, all of the
bits always have a definite state at any
instant in time, say 011100101 ... In a
quantum computer, however, we will say
that the state of the bits can be described by
a wave function, which might look like

¥ =4|011100101 ...)
+b[111010001 .. .) + ... (1)

The coefficients a, b, . . . are complex num-
bers, and the probability that the computer
is in the state 011100101 . . . is | a|2, that it
is in the state 111010001 . . . is |b|2, and so
on. However, describing the state of the
computer by a wave function does not
merely imply the ordinary uncertainties of
life that we use probabilities to describe. For
instance, the phases of the complex coeffi-
cients a, b, ... have genuine significance:
These coefficients can describe interference
among different states of the computer, a
very useful process for computation, as it
turns out. The quantum wave function de-
clares that the computer exists in all of its
states simultaneously so long as that state is
not measured; when we do choose to mea-
sure it, a particular state will be observed
with the prescribed probability.

No computer now is very well described
by such a wave function; our present-day
machines accurately obey the laws of clas-
sical physics. But if someday the bits of a
computer are shrunk to atomic scale, then a
quantum description of the bit state and the
dynamics of a computer may become plau-
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sible. Feynman considered this possibility in
1985 (1) and concluded optimistically, “it
seems that the laws of physics present no
barrier to reducing the size of computers
until the bits are the size of atoms, and
quantum behavior holds dominant sway.”
In this article, I will first discuss the main
basis of Feynman’s optimism, which is that
the analog of computer “gates” can be im-
plemented within the realm of some very
well understood (but difficult) experimen-
tal physics. Then [ will go on to discuss
what Feynman did not know, that by clev-
erly using quantum dynamics to design
computations that interfere constructively
or destructively, remarkably powerful com-
putations like Shor’s prime factoring algo-
rithm (2) become possible. The seeds of this
idea also appeared in 1985, in a paper by
Deutsch (3). Deutsch realized then that
quantum mechanics strikes down one of the
most cherished principles of theoretical
computer science, that of a unique compu-
tational complexity for every mathematical
problem. Going back to the work of Turing
(4), it was believed that the answer to the
question of whether any given problem
could be solved in a time that was polyno-
mial in the size of its inputs, or greater than
polynomial, was independent of the physi-
cal apparatus used to perform the computa-
tions. This indeed seems to be true for all
computers operating on the principles of
classical physics, but quantum computers
can solve in polynomial time problems that
have no polynomial-time solution on any
classical machine.

Building Blocks of
Quantum Logic

In this section I offer a bottom-up view of
how a quantum computation might be re-
duced to practice, emphasizing that, at least
in its first few steps, the required operations
correspond to very well known procedures
in experimental physics. At the very base of
this construction is the qubit (or quantum
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bit) (5), a quantum system that, like an
ordinary computer bit, has two accessible
states but can, unlike an ordinary computer
bit, exist in any superposition of those two
states. Many two-state systems are known in
physics, but throughout this article [ will
use as an example of this the spin-up (la-
beled 11)) and spin-down (labeled |0))
states of a spin-"2 elementary particle like
an electron or a proton. As in Boolean
logic, we will build up operations in quan-
tum logic using a small collection of logic
gates, in which the states of input qubits
(one or two qubits in the examples given
below) are transformed in a specified fash-
ion, leaving the qubits in a particular output
state. In accordance with the laws of the
quantum mechanics of isolated systems, we
will take the allowable transformations to
be unitary operations describing the time
evolution of the input quantum state.

As an example, the quantum analog of
the one-bit NOT or inverter gate can be
implemented with spectroscopic techniques
that have been well known in physics for
over 50 years. As almost any elementary
textbook of quantum mechanics shows (6),
the time evolution of a spin-" state can be
accurately controlled by the judicious appli-
cation of time-dependent magnetic fields.
An inversion of the state, in which spin-up
evolves to spin-down and vice versa, is ac-
complished by what is known as a tipping
pulse. Suppose that we have an isolated spin
in the presence of a combination of a sta-
tionary and a time-dependent magnetic
field, described by the Hamiltonian

1
H = ng[HO(rz + Hyo,P(t)sin(wt)]
(2)

Here, gp is the magnetic dipole moment
of the particle (u = efi/me, in centimeter-
gram-second units, where e is the electron
charge, #i is Planck’s constant divided by
2m, m is the particle mass, and ¢ is the
speed of light), the static magnetic field
H, is along the 7 axis, and the ac magnetic
field pulse with amplitude H, is along the
y axis; o, and o are the Pauli spin matri-
ces, and P(t) is the pulse envelope func-
tion, shown as a square pulse in Fig. 1. The
time (t) evolution under this Hamiltonian
is discussed fully in many places [for ex-
ample, (6)]. During a tipping pulse, the ac
field is in resonance with the energy dif-
ference between the two spin states: i =
giH,. Under this condition, the 2 X 2
unitary matrix describing the time evolu-
tion of the spin in the spin-up—spin-down
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basis, from the beginning t = O to the end
t = T of the pulse, simply has the form of
a two-dimensional rotation matrix (except
for phase factors)

B T2 0 cosQT/2 —sinQT/2
L0 @) sinQT2  cosQT/2
(3)

Here, 0 = guH, /4% is the Rabi frequency;
because both ) and T are at the disposal of
the experimentalist conducting the tipping-
pulse procedure, any angle of rotation may
be obtained. For a 180° tipping pulse, when
QT = m, this time evolution accomplishes
the NOT operation: If the system is initially
in the |0) state, it ends up in the | 1) state,
and vice versa. Of course this classical op-
eration has the nonclassical feature that
there are definite phase factors associated
with the time evolution. They can in gen-
eral be chosen to be unity, although because
usually ® >> ), setting these phases is
probably the most difficult feature of the
tipping-pulse unitary transformation to
control accurately.

There is nothing special in this spin-
resonance operation about the tipping an-
gle ; a whole continuous (three-parame-
ter) family of operations, corresponding to
any SU(2) matrix (7), can be performed. [t
is this generalization that is the essence of
quantum computing and gives it its great
potential power.

For a coupled two-spin system, there is a
similar spin-resonance protocol (8-10), fa-
miliar to the physics of double resonance,
which can perform the exclusive-or (XOR)
function (11, 12). The XOR of two bits is
simply the sum of their two Boolean values,
modulo 2. The only new ingredient that is
needed to accomplish the XOR by spin-
resonance techniques is a nonzero Hamil-
tonian coupling together the two spins. The
protocol is easiest to explain if this coupling
has the form of an Ising interaction (9), so
that the Hamiltonian takes the form

1 1
H= z gal‘LHOO-az + E gbp“HOO-bz

+ Jo o, + H(1) (4)

although an XOR protocol can be con-
structed no matter what the form of the
coupling term between the two spins a and
b. Here, #(t) is the time-dependent Ham-
iltonian to be prescribed by a tipping-pulse
protocol. Without the application of these
tipping pulses, this Hamiltonian simply de-
scribes a stationary quantum system with
exactly four energy eigenstates (Fig. 2A).
Because of the spin-spin interaction, the
energy spacing between every pair of levels
in this four-level spectrum will generically
be distinct. This permits a tipping-pulse
protocol in which specific individual reso-
nances can be selected. Thus, if a pulse is
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Fig. 1. The action of the NOT or inverter gate. The
Hamiltonian describing the magnetic-resonance
manipulation that results in the NOT operationis H
= gulHeo, + H,(t)o . (A) The time dependence
of the magnetic field of the tipping pulse, in this
example a sinusoid at frequency o multiplied by a
square function P(t) going fromtimet = 0tot =T.
(B) Energy level diagram for the qubit. The tipping
pulse is tuned to be in resonance with the energy
gap between the two stationary energy eigen-
states |0) and |1). (C) State evolution diagram,
showing the evolution paths of the two computa-
tional basis states. The  in this diagram denotes
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that on the path indicated, the state acquires a 180° phase shift (assuming the parameters are chosen

such that o7 = 0 and QT = 7).

applied at time t; whose ac frequency is
tuned to w, [the energy spacing between
the first and third energy levels in this
spectrum (Fig. 2A)] and the tipping angle is
chosen again to be 1, then at the end of the
pulse at time t,, the desired XOR will be
complete. That is, by flipping the state of
the a spin if the b spin is |1), and doing
nothing otherwise, this pulse leaves the fi-
nal state of spin a in the XOR of the initial
states of a and b, while leaving b in its
original state, as summarized by the first two
columns of the truth table in Fig. 2C. A
gate symbol for this XOR operation is
shown in Fig. 2D.

The XOR protocol is very closely related
to procedures invented long ago in the field
of resonance spectroscopies (13). In 1956,
Feher introduced a procedure for polariza-
tion transfer in electron-nucleus double res-
onance (ENDOR), which contains the
XOR protocol just discussed. In Feher’s ini-
tial experiments, the a spin was carried by
the outermost unpaired electron of a P do-
pant in crystalline Si, and the b spin was
carried by a nearby 2°Si nucleus (hence the
name of the technique). The ENDOR and
XOR protocols differ only in that Feher’s
procedure used a second  pulse applied at
time ¢, at a different frequency w, resonant
with the transition between the first and
second energy levels in the spectrum in Fig.
2A. At the end of the second pulse, at time
t5, the ENDOR operation is complete. The
truth table for the ENDOR protocol is the
first and third columns of Fig. 2C; like the
one-pulse protocol, it leaves the a spin (the
P electron spin in Feher’s experiment) in
the XOR of the initial states of a and b. In
addition, it leaves b in the initial state of a,
which is the polarization transfer that was
of interest to Feher; for many purposes in
physics, chemistry, and biology, it is highly
desirable to move the spin state of an elec-
tron onto a nearby nucleus. The fact that
this procedure also performs an interesting
logical function, XOR, was not previously
noted by ENDOR spectroscopists.

In either the one- or two-qubit gates,
high-precision methods from experimental
physics are required. It is necessary that the
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timing of the tipping pulses be precisely con-
trolled, in order that the accumulated phase
T be precisely zero (or some other chosen
value). For the two-qubit operations, it is
also necessary that the interaction Hamilto-
nian that determines the energy level split-
tings in the four-level spectrum be precisely
known and controlled. In addition, the fre-
quency content of the 7 pulses should be
tailored in such a way that a pulse that
nominally has ac frequency w,; has no small
residual undesirable component at w,. This
requires a careful choice of the pulse shape
(in general, the square-pulse form in Fig. 1A
would be undesirable). Many of these issues,
especially those of pulse shaping and fre-
quency stability, have been considered ex-
tensively in the science of magnetic reso-
nance (14).
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Fig. 2. The action of the two-qubit XOR gate. (A)
Energy level diagram for the two qubits, showing
the four stationary states of the Hamiltonian in Eq.
4. The states are labeled by the two qubit values of
the two spins |ab). (B) The time evolution path-
ways of the quantum states under the action of
the tipping-pulse protocol described in the text.
Again, the m’s denote 180° phase shifts along the
indicated pathways. (C) The truth table summariz-
ing the result of the time evolution of the gate from
the initial state (time t,) to after the first (time t,) and
second (time t,) tipping pulses. (D) The gate nota-
tion used for the XOR operation, obtained by us-
ing just the first of the two pulses of the ENDOR
protocol. The resulting gate leaves qubit b un-
changed and leaves a in the state given by the
sum of a and b, modulo 2.



Fig. 3. Construction of the AND
gate. (A) A notation for the
three-qubit AND operation, and
a gate construction of AND us-
ing three XOR gates and four
single-qubit rotations. The w/4
gate corresponds to the opera-
tion in Eqg. 3, with o7 = 0 and
QT = w/4. When the work qubit
bis initially set to |0), it ends up
in the state |a-c). (B) The full
truth table of the three-qubit

AND gate. (C) The state evolu- 000| 000

tion diagram for the AND gate, 001| 001

showing the intermediate state 010( 010
along selected pathways at the 011} 110
times shown in (A). A new fea- 100| 100

ture appears here: For some in- 101} 111

put states, the intermediate
state is a superposition of two
different computational path-

111| 101

110| 110
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ways. The final state is definite again because constructive interference permits only one of the possible
outcomes (the pathways that interfere destructively at the last step are dashed).

Quantum Circuits

Virtually any unitary operations on sets of
qubits can be thought of as the universal gates
of quantum computation (15, 16). What this
means is that any unitary transformation in
the 2"-dimensional Hilbert space spanned by
n qubits can be decomposed exactly (12) into
a set of these universal operations applied in
sequence to the n qubits. The two operations
introduced above, one-bit rotations and the
two-bit XOR, possess this universal property
(12). Thus, even though it is beyond present-
day experimental capabilities, we could build
up any quantum computation (which includes
all ordinary Boolean computations, and more)
by applying these basic operations in sequence
to selected qubits or pairs of qubits to build up
a “circuit” of arbitrary complexity.

As an example of the use of this reper-

Fig. 4. Cartoon illustrating the kind 1
of atomic-scale engineering that
would be required to implement
guantum computation with an
AFM. [t is imagined that an un-
doped crystalline Si tip is approach-
ing a crystalline Si surface. The
qubits are carried by the proton
spin of the H atom at the very end of
the tip and the H atoms arranged
periodically along the surface. Inter-
actions between the tip qubit and
the other qubits can be turned on
and off by the physical approach of
the tip to various sites on the sur- (]H\

face, permitting a gate protocol like ]
~5=
|
N

o\

the one of Fig. 3A to be carried out.
By arranging for all the surface dan-
gling bonds to be saturated, one
can eliminate undesirable qubits
carried by stray electron spins.
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toire to efficiently construct a useful quan-
tum computation, the construction of an
AND gate is shown in Fig. 3 (12, 17). It
involves three bits because the input bits a
and c are left unchanged during the opera-
tion; the work bit b is set to | 0) initially and
is left in the state (a AND c¢) at the end.
(The AND is the product of the two bit
values.) It is well known in “reversible”
logic (18, 19) that it is necessary to intro-
duce a work bit because the AND operation
by itself is irreversible; the same is true in
quantum computing because all unitary op-
erations are reversible (that is, have an
inverse). The AND gate in Fig. 3A requires
three XOR gates, in each case with the
result placed in the b bit, along with four
one-bit gates, all of which are just =45°
tipping pulses. This particular implementa-
tion of the AND has phase factors that are
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Stray qubits carried by nuclear spins are likewise avoided by permitting only spin-zero isotopes in the
vicinity of the H atoms. The tip qubit can be made spectroscopically distinct by bonding it to a different
atom producing a chemical shift, which can be useful in devising selective magnetic resonance protocols.
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all unity except for one: The state |110) is
transformed to the state —|110). In many
cases this change of phase may be accept-
able for the operation of the gate (for ex-
ample, if it is known that the input qubit b
will always be set to |0)). If it is necessary
that all the phase factors be unity, then the
implementation is somewhat more compli-
cated, requiring six XORs and eight one-bit
gates (12).

Diagrams such as Fig. 3A give a decep-
tively simple impression of the ease with
which elementary quantum-mechanical
manipulations might be assembled to per-
form a quantum computation. In the imple-
mentation of the AND gate, it is implied
that we know how to “wire up” three XORs
and a number of other gates. But consider
what this “wiring up” means: While the
XOR connecting qubits b and ¢ is in oper-
ation, spins b and ¢ should have some pre-

- scribed interaction (say, the Ising coupling

of Eq. 4), whereas the couplings between a
and b and between a and ¢ should be zero.
When the second XOR is in operation, the
microscopic couplings should be rearranged,
with the a-b coupling being nonzero. This is
not a commonplace happening, and it cer-
tainly was not envisioned by Feher or any
magnetic resonance experimentalists in the
1950s.

This “interconnection” problem can
probably be solved, but it is one whose
solution involves the most speculative and
uncertain features of the quantum computer
implementations suggested to date. The ge-
danken apparatus in Fig. 4 shows a possible
future device that might solve the intercon-
nection problem for a quantum computer. It
depicts the tip of a specifically designed
atomic force microscope (AFM) (20) ap-
proaching the surface of a crystal from
above. It is imagined that both the tip and
the surface are constructed with the follow-
ing criteria in mind: (i) The spins of the
H-atom nuclei, one of them placed at the
very end of the tip and the others placed
periodically on the surface, serve as the
qubits. (ii) All the electrons are tied up in
bonds, both in the bulk (crystalline Si is an
insulator) and on the surface. This is done
so that flipping an electron spin, or trans-
porting it, is not an available quantum de-
gree of freedom because such excitations
require too much energy. (iii) Likewise, all
other nuclei in the system have a spin of
zero, so that only the H-atom proton spins
are available for interaction. (I will say
more at the end of this article about the
undesirable consequences of stray quantum
degrees of freedom in a quantum computer,
principally concerning their role in the loss
of quantum phase coherence.) (iv) Like any
AFM, this one should be capable of moving
the atom at the tip into contact with any
atom on the surface at will. This property is
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the one that accomplishes the desired in-
terconnection action: When the first XOR
in Fig. 3A is to be performed, the micro-
scope tip should be parked in contact with
the H atom to the right on the surface in
Fig. 4; for the second XOR, it should be
parked in contact with the H atom on the
left, and so on. Present-day AFMs cannot
yet satisfy all of these design criteria. How-
ever, incredible strides have been made in
the last few years in using AFMs to do
spin-resonance manipulations and measure-
ments on small groups of spins (20, 21).

Peter Shor’s Prime Factorization

The AND gate constructed in Fig. 3A per-
forms a classical Boolean operation. Still, its
implementation is very nonclassical, in a
way that is a prototype for the really pow-
erful procedures (for prime factorization and
the like) that are unique to quantum com-
putation. Figure 3C shows how the various
input states of the AND construction of Fig.
3A evolve in time through three of its
stages to the final answer (we only follow
the computations for which the work qubit
b is set to |0)). In any classical computa-
tion, each of these computations would fol-
low a single, definite pathway in time from
the beginning of the computation to the
end, but in quantum computation, the com-
putation can be split up into several (in this
case just two) pathways that, by the quan-
tum-mechanical principle of superposition,
evolve in time in parallel. Because these
pathways carry definite phases (note in the
figure the points at which a 180° phase shift
is introduced by the time evolution), these
computations can, upon recombining at the
end, interfere either constructively or de-
structively to produce definite outcomes. In
the example shown, |OOO) evolves in time
to itself, as required by the AND truth
table, because the two computational path-
ways arriving at |000) at the end have the
same phase (0 along one path, 2 along the
other) and so interfere constructively. The
incorrect outcome, |OlO), which the com-
putational pathways also reach, is prevented
because the phases are opposite (0 and )
and the interference is destructive. If the
phases were not carefully controlled, then
the incorrect outcome would occur half the
time. It is by this means that a quantum
computation, despite being in a very com-
plex, indeterminate computational state in
its intermediate stages, can be in a definite,
computationally useful state at the end.

It is this general schema for quantum
computation, first introduced by Deutsch
(3), that is used to great effect in Shor’s
algorithm (2, 4) for efficiently solving a
large-scale computational problem. Figure 5
illustrates a kind of architecture of the
quantum computation that Shor uses to
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perform prime factorization. This diagram is
a generalization of the one used to illustrate
the operation of the AND in Fig. 3A, in
that it shows the evolution pathways of the
computational states as a function of time
though the factoring procedure (time runs
downward now, rather than to the right).
As Deutsch and Jozsa envisioned in earlier
work (22) [see also (23)], Shor divides the
qubits of the computer into two registers
labeled (somewhat misleadingly) input and
output. The number of bits in each register
needs to be of order the number of bits in
the integer to be factored; for argument’s
sake (to be very ambitious), suppose that
both registers contain k = 1000 bits. The
rectangles in Fig. 5 depict the members of
the entire Hilbert space of the input and
output bits. This diagram is of necessity
highly schematic because the dimension of
this Hilbert space is huge: 2!°% for both the
input and output registers. In fact, it is this
exponential scaling of the size of the Hil-
bert space with respect to the number of
particles in the system that is one of the
reasons for the great potential power of
quantum computing; unitary matrices can
easily be constructed and multiplied on an
ordinary digital computer, but their size
cannot be exponential in the number of
components of that computer (24).

The shading in Fig. 5 indicates the in-
stantaneous state vector throughout the
three main stages of Shor’s computation.
The first few steps are very simple: The
starting state is fixed to be all zeros (all spins
down). (The classical input, that is, the
integer N to be factored, does not enter the
procedure yet.) In stage 1, the computation
is split up into 2'°%° pathways, so that the
wave function of the system becomes a
linear superposition of all possible states,
with equal phases, of the input register x.
This highly nonclassical computation is
very easy to prescribe spectroscopically: A

1,

HERRSRREERRI R eeney

90° tipping pulse applied to each input spin
places the wave function of the system in
the desired state.

Stage 2 of computation is less trivial,
requiring a single evaluation of a classical
Boolean function

f(x) = c*(mod N) (5)

The value of this function is placed in the
output register y. Here x is the value of the
input register considered as an integer in
binary representation, N is the integer to be
factored, and the constant ¢ is any other
integer that has no prime factors in com-
mon with N; mod N indicates modular
arithmetic, in which the result is the re-
mainder after division by N. Because of the
superposition principle, a single evaluation
of f(x) obtains every value of the output,
given that the input is a superposition of all
possible values. To evaluate f(x) on a quan-
tum computer, it should first be “compiled,”
in the usual classical sense, so that f(x) is
written as a sequence of operations of prim-
itive Boolean functions like NOT and
AND. Then one would implement this se-
quence of NOTs and ANDs as a quantum
procedure, for example, in a sequence of
magnetic-resonance tipping pulses.

I will not give a complete explanation of
why the parallel evaluation of this particu-
lar f(x) is useful for prime factorization. This
requires some straightforward technicalities
of number theory; good discussions may be
found in the original literature (2) and in
some recent reviews (4). In a nutshell, the
important property of f(x) is its periodicity
with respect to x. If N is a prime number,
then the period of f(x) is N — 1, but if N is
composite, the period of f(x) is shorter, and
knowledge of this period leads, after a
straightforward (classical) calculation, to
one of the prime factors of N.

Shor noted that a quantum computer is
very well adapted to finding the periodicity

Start Fig. 5. A schematic depiction of the

time evolution pathways in Shor’s

prime factoring procedure. The

computational states appearing in
the wave function at each selected
instant in time are indicated by the

filled rectangles. A few of the path-

ways are sketched out. Most of the

pathways in the final step (dotted

lines) interfere destructively, with
only a few (solid lines) interfering
constructively.
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of f(x), by means of the execution of a
Fourier transform on the input register x
(not the output register y); this is the third
and final stage of computation depicted in
Fig. 5. To be precise, the Fourier transform
takes a wave function of the form

1.1

> alx (6)

x=00..0

v, =

and evolves it in time so that it ends up as

11...1 1.1

\I’( — Z 2—k/2 Z eZ-n-ixx'/Z’\'ZCxl |X>

x=00..0 ¥ = 00..0
(7

or in words, the final wave function coeffi-
cients are the discrete Fourier transform of
their initial values. Shor observed that this
transformation is a unitary operation and
showed that it could be performed in a num-
ber of steps polynomial in k, the number of
bits in the input register (which is in turn of
order the number of bits needed to represent
N, the number to be factored). Coppersmith
(25) found a simple, explicit, robust gate
construction (Fig. 6) for implementing the
radix-2 Fourier transform of Eq. 7. It is a
straightforward transcription of the steps in-
volved in performing the Cooley-Tukey fast
Fourier transform (FFT), with the individual
“twiddle factors” of the FFT implemented by
the two-qubit X; gates shown. This proce-
dure is very similar to the first step of Shor’s
computation, which just consists of the 90°
tipping pulses applied to each bit in turn,
without the twiddle-factor gates. Copper-
smith noted that this sequence of operations
takes on the order of k? steps.

This final FFT step is a very efficient
way of obtaining the period of f(x), in the
same way that the scattering of x-rays from
a crystal is a good way of obtaining its
periodicity; a final measurement of the val-
ue of the register x is a measurement of the
position of one of the “Bragg peaks” of this
scattering process [although this measure-
ment only obtains some unknown multiple
of the fundamental period of f(x), there are
again some straightforward number-theo-

Fig. 6. The gate array introduced by
Coppersmith (25) for performing the
Fourier transform (step 3 of the Shor
procedure in Fig. 5). The matrix uni-
tary operators corresponding to the
two types of guantum gates used in
the figure are shown. The two-qubit
X, gate may be implemented by a

retic considerations that permit the funda-
mental period itself to be deduced reliably
from this measurement]. Shor’s procedure
manages to be useful in the same way as the
AND gate implementation; despite being in
an indefinite, superposed computational
state through the middle parts of the com-
putation, destructive interference forbids al-
most all possible outcomes (just as in Bragg
scattering, diffraction into almost every di-
rection is forbidden), leaving the system in
an (almost) definite, and thus computation-
ally useful, state. Note that the diffraction
process described here differs in a crucial
respect from the diffraction of classical
waves: the size of the diffraction grating
used in Fig. 5 grows as an exponential of the
size of the number to be factored. It is for
this reason that classical wave optics cannot
efficiently solve this problem.

A final tally of the number of steps
required to perform Shor factoring reveals
why this result has caused a stir in the
computer science community. The result is
polynomial in k, going as k* for small k and
asymptotically approaching k? for large k.
After many decades of effort, the best algo-
rithms for factoring on an ordinary Boolean
computer are nonpolynomial, scaling like
exp(ak!'?®), where a is some constant (4,
26). Although it is not known whether this
particular problem might ultimately yield to
a polynomial-time solution on an ordinary
computer, Shor’s result has made computer
scientists realize that the algorithmic ap-
proaches available on a quantum computer
are much more powerful than ordinary
Boolean logic, and active work is under way
in more fully defining the power of quan-
tum mechanics to solve important mathe-
matical problems.

The Decoherence Problem

Even though the formal results on the great
capabilities of quantum computation are
perfectly in accord with the laws of quan-
tum physics, there are still several very fun-
damental physical obstacles that need to be
overcome before quantum computation can

simple combination of XORs and
one-qubit gates (72). The X, gate e

acts symmetrically on its two qubits.
The process can be extended for
inputs beyond a through e.
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be performed in the laboratory. These ob-
stacles will make the path to constructing a
quantum computer a long and arduous one,
and one that will not be traversed before
many years have elapsed. Two principal
obstacles have been identified: the error
correction problem and the decoherence
problem. I will not discuss error correction,
which may ultimately be very difficult in
quantum computing because it seems that
slight imperfections in the implementation
of m pulses and other elements would ulti-
mately lead a calculation off track (27).
Other authors have explored the difficulties
here (28, 29) and are beginning to define
the rudiments of an error correction scheme
(30). For the Shor algorithm, small errors
can be defeated simply by running the com-
putation repeatedly until the correct answer
is obtained—prime factors can easily be
confirmed by multiplication. (Actually,
Shor’s algorithm, like many other useful
ones, is not guaranteed to give a correct
answer in one run, even in the absence of
errors. )

It seems to be the decoherence problem
that makes even the initial investigation of
modest-sized quantum computations diffi-
cult. Decoherence is this: If the quantum
system is not perfectly isolated from its en-
vironment, the quantum dynamics of the
surrounding apparatus will also be relevant
to the operation of the quantum computer,
and its effect will be to make the computer’s
evolution nonunitary. Because computa-
tional pathways separated at the beginning
of the computation only recombine at the
very end (Fig. 5), loss of phase coherence
along these paths will spoil the constructive
and destructive interference that is essential
for quantum computing; therefore, the de-
coherence time ty, needs to be much longer
than the expected running time of the com-
putation. Fortunately, the decoherence
problem is one for which continuing ad-
vancement in the experimental art is likely
to make a difference. Improving the isola-
tion between the quantum system and its
environment, which accompanies the
steady advance of the technology used in
high-precision quantum physics experi-
ments, results in a lengthening of t, and a
growing possibility to perform useful quan-
tum computations.

Table 1 gives a survey of the current
state of the art for t,’s in a wide variety of
two-state quantum systems (16). Because of
the great disparity of energy scales, the
available speeds range over 16 orders of
magnitude. There is also a great disparity in
the present technological capability for ap-
plying tipping pulses to each of these sys-
tems; the gamma-ray spectroscopy that
would be needed for manipulating the
Maéssbauer nucleus does not exist, whereas
the high-precision radio-frequency technol-
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ogy for doing tipping pulses in nuclear mag-
netic resonance (NMR) is very mature.
Also, the technology may not allow the
potential speed of any given qubit to be
fully utilized: For example, in the recent
proposal for implementing quantum com-
putation with a linear ion trap (31), the
switching time would be 1073 s rather than
107 s because it is limited by the qubit
encoded in the quantized vibrations of the
ions in the trap.

There is also a great disparity in the de-
coherence times available in these systems
(Table 1). The ratio of the switching times
to the decoherence times is an important
figure of merit for quantum computation,
being the number of steps of computation
that might be performed before phase coher-
ence is spoilt. Unruh’s (32) calculations in-
dicate that to perform computations like
Shor factoring, this figure of merit should be
something like the cube of the number of
bits in the integer to be factored. If the
object is to factor a 10*-bit number (a task
believed to be beyond the capability of any
conceivable classical computer), it is evident
that most of the present-day qubits are inad-
equately phase coherent to do the job. Nev-
ertheless, several experiments have now
been done in which actual, rudimentary
quantum logic gates have been constructed,
one involving optical microcavities (33) and
another using trapped ions (34). The tech-
nology used in this last example is the one
that is under development for the next gen-
eration of atomic clocks (35). This is signif-
icant because quantum computers require
long dephasing times in addition to long

Table 1. Important times for various two-level
systems in quantum mechanics that might be
used as quantum bits, including prospective
qubits ranging from nuclear physics, through
atomic, electronic, and photonic systems, to elec-
tron and nuclear spins. The time t, ;... is the min-
imum time required to execute one quantum gate;
it is estimated as #i/AE, where AE is the typical
energy splitting in the two-level system; the dura-
tion of a r tipping pulse cannot be shorter than
this uncertainty time for each system. The phase
coherence time as seen experimentally, t,,, is the
upper bound on the length of time over which a
complete quantum computation can be executed
accurately. The ratio of these two times gives the
largest number of steps permitted in a quantum
computation using these guantum bits. See (76)
for the original references.

t Wil f() 1
Quantum system S(S’)Ch (s‘) Ratio

Md&ssbauer nucleus 10719 10710 10°
Electrons: GaAs 10-1% 1070 108
Electrons: Au 10~ 10°8 108
Trapped ions: In 10-'% 10" 10"
Optical microcavity 10~ 10-%  10°
Electron spin 10-7 103 104
Electron quantumdot ~ 10-% 108 108
Nuclear spin 10-% 104 107
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decoherence times. Dephasing, loss of the
accuracy of the phase factors of Eq. 3 because
of the drift of the clock, must also be kept
very small in quantum computation.

Outlook

It is evident from this survey of the current
state of the art in quantum experimental
physics that the construction of quantum
computers is presently in the most rudimen-
tary stage, and, that to even think about a
procedure like Shor factorization, which
might require millions of operations (14) on
thousands of qubits, might be absurdly pre-
mature. However, even a much more modest
quantum computer will permit the study of
effects that are of great scientific interest. For
example (10), even a few bits of quantum
computation will be very useful in perform-
ing so-called Bell measurements, which
could be used to implement quantum tele-
portation (36), in which an unknown quan-
tum state can be transported to a remote
location. At perhaps the 10-qubit level, a
quantum computer becomes capable of per-
forming Schumacher’s quantum coding (5),
which would be of interest in the implemen-
tation of efficient quantum cryptography
(37). And at perhaps the 100-qubit level, a
quantum computer becomes an efficient re-
peater for a noisy (that is, partially deco-
hered) quantum cryptographic link (38). In
this application, it might become possible to
create Einstein-Podolsky-Rosen pairs (36) at
very remote locations, permitting new, strin-
gent tests of the validity of the quantum
theory. At this time, both physicists and
computer scientists are actively searching for
new ways to use quantum cOmputers.

The quantum-gate approach outlined
here appears to be a very arduous one for the
ultimate implementation of a quantum com-
puter, but other paradigms, which might ul-
timately provide an easier path to implemen-
tation, are being explored. For example, it
might be that the natural time evolution of
some simple quantum system, like the quan-
tum states of a crystal, might itself perform
some useful computation; preliminary work
on this sort of “quantum cellular automaton”
has been done (9, 39). Perhaps our present
understanding that stringent isolation is a
requirement for quantum computation is un-
true; it may be that the time evolution of the
density matrix of an open quantum system is
also a powerful computational tool, or that
new approaches to error correction (30) will
let noisy qubits compute. In any case, the
next few years should be interesting ones for
the quantum computer.
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