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Dependence of Peptide Binding by MHC Class I 
Molecules on Their Interaction with TAP 

Andres G. Grandea Ill, Matthew J. Androlewicz, 
Raghbir S. Athwal, Daniel E. Geraghty, Thomas Spies* 

Major histocompatibility complex (MHC) class I molecules bind peptides that are delivered 
from the cytosol into the endoplasmic reticulum by the MHC-encoded transporter as- 
sociated with antigen processing (TAP). Peptide capture by immature heterodimers of 
class I heavy chains and p,-microglobulin may be facilitated by their physical association 
with TAP. A genetic defect in a human mutant cell line causes the complete failure of 
diverse class I heterodimers to associate with TAP. This deficiency impairs the ability of 
the class I heterodimers to efficiently capture peptides and results from loss of function 
of an unidentified gene or genes linked to the MHC. 

MHC class I molecules export peptides 
cleriveci ii.0111 cytosollc protein deqrailatlon 
to the cell s~lrtace ailel thcis enahlc cytotoxic 
T cells ti) detect intracellcilar antigen ( 1 ) .  
Thev consist of a inemhr,lne-ancl~orecl ~3olv- 

L ,  

morpllic class I Ileavy chain,  sol~lhlc P,- 
mici-oqloh~llin ( P 2 M ) ,  rl~lil 21 pepticie llgancl 
of 8 to 1C amino aclils \vltll an  allele- 
specific scclucllce motif (2).  T h e  complete 
suh~lni t  ,1~seml3ly of class I molecules 1s LISLI- 

ally reou~rcii for their conformational sta- , . 
hility, matLiratlon, and normal surface ex- 
~ I - C S I C X I  ~ I I L ~  i~lvolves accessory lnolec~lles 
( 2 ) .  U p o i ~  entering the  e~ldoplasmic retlc- 
~ i l u m  (El?), ne\vly synthesized human class I 
heavy chains arc retained hy calnexin until 
they comhine \\:ith P2;CI (3). T h e  immature 
class I heavy chain-Plhl heteroii~mers then 
assoclatc with T A P  transporters (4), \vhich 
consist of the MHC-encoded T A P 1  < ~ n d  
T A P 2  suh~inits ailii cielivel- the  pepticles 
that are mai~l lv  bo~lnii  hv class I Ilct- 
eroilimers fro111 the  cytosol ~ n t o  the l u m e ~ l  
of the  ER (5-7). This physical interaction 
may bc c o ~ ~ p l e i l  to peptiile hinding b\ cl;~ss 

I heterodimers, l~eca~ i sc  illssociatlo~l from 
T A P  correlates cvith tllelr conversion ~ n t o  
stably conformeii class I molcc~iles. T h ~ i s ,  hy 
interacting ct71th T A P ,  class I heterodimers 
I I M ~  paill access to pepriiies hefore these 
may he clil~itecl anci possihly ilegrai!eci 111 the  
l~illleil of the  ER. Hocveve~-, it is u n k n o a n  
whether this propi)secl mechanism promotes 
peptlde binLiing hy class I heterodimers in 
living cclls. 

111 defining the  assembly of class I mol- 
C C L I ~ C ~ ,  mutant cell lines- with speciflc cic- 
fects ha\,c heen i i~strumental.  I11 the  human 
mutant ly~n~hol- i la~toi i i  cell line (LCL) 
721.220, all ~ l n k ~ l o \ v n  ilefcct imp,llrs the  
sul-face cxprcssio~l of class I molecules. 
These cells express functional PIM and 
T A P ,  ,IS inciicatcd hy transcomplementa- 
tion of Daudi ( P 2 M p )  and mutant LCL 
721.1 74 ( T A P - )  cclls after f ~ ~ s i o n  (8). 
These cells have heen  sola ate ti after repeat- 
cil mutaxcnesis and selectioil against tllc 
surface class I molec~llcs encoded in a hem- 
i ~ y g o ~ i s  M H C ,  rcsultlngj in deletion of 
HLA-A anel -B and ~n'teil~iceil surface levels 
of HLA-C (9 ) .  H ~ c v c v e r , ~  as \\,it11 H L h - C ,  

I A( 
A G, Grandea , D, E, Geragllty, T, Spies, Cllnlcal R e  22C cells are also ,111al;le to express normal 
search D ~ v ~ s ~ o n .  Fred Hutchinson Cancer Research C e n  scirface a~noc~l l t s  of several H L h - A  and -B 
ter, 11 24 C o l ~ ~ ~ n l b ~ a  Street Seattle. WA 981 04. USA alleles after gene transfer-mcdiateii recoil- 
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Fig. 1. Reduced surface expression of HLA-A1 and -88 in 220- 
derived stable transfectants and mutual transcomplementation 
with mutant 174 cells after fusion (22). Surface amounts of HLA- 
A1 and -88 were quantitated by indirect immunofluorescence and 
flow cytometry after binding of the specific mAbs GS142.1 and 
GSP8.1, respectively (15). (A and B) The average fluorescence 
intensities (logarithmic scale) of 220-A1 (A) and 220-88 (B) cells 
were 20 and 25% of those seen with the C1 R-A1 and C1 R-B8 
control transfectants, respectively. Independent transfectant iso- 
lates gave similar results. Shaded profiles show control stainings 
of untransfected C1 R and 220 cells. Open profiles show binding of 
GS142.1 and GSP8.1 by untransfected wild-type LCL 721.1 12 
control cells (9). (C) Transcomplementation in a 220-88 x 174 
hybrid cell line (X2) resulted in large surface amounts of HLA-B8. 
(D) Hybrid X2 cells showed completely restored surface expres- 1 2 3  1 2 3  
sion of 174-derived HLA-B5 molecules, by binding mAb 4D12 in 
amounts similar to those bound by the parental wild-type LCL 721.45 control cells (23). 

otherwise normal (10). All of the 220 stable 
transfectant isolates displayed only 20 to 
25% o f  the surface amounts of HLA-A1 
and -B8 measured on the C1R transfectants 
(Fig. 1, A and B) (8), although the class I 
heavy chains were synthesized at similar 
rates in all of the transfectants and other 
surface glycoproteins (such as HLA-DR, 
CD20, and the transferrin receptor) were 
present in amounts equal to those on nor- 
mal B-LCL (I  I). Corresponding results 
were obtained after transfection of HLA-G 
cDNA into 220 and control LCL 721.221 
(HLA-A-, -B-, and -C-) cells (9, 11). 
Thus, a specific defect in 220 cells simi- 
larly impaired the surface expression of 
diverse class I molecules encoded by the 
four functional MHC class I genes. In 
accord with previous data, this defect was 
independent of TAP, because mutual genet- 
ic transcomplementation in a 220-B8 x 174 
hybrid cell line (X2) restored large surface 
amounts of. HLA-B8 and of 174-derived 
HLA-B5 (Fig. 1, C and D) (8). More ,ver, 
TAP-dependent translocation of a 17' :led 
reporter peptide into the ER of 220 cell3 was 

Fig. 2. Normal function of TAP in 220 cells. TAP- 
dependent peptide transport in 220 cells was as 
active as in control 221 cells and was more active 
than in C1 R cells. Swei is an MHC-heterozygous 
B-LCL. Bars show recovery of a labeled reporter 
peptide with a glycosylation acceptor sequence. 
Peptides were introduced into cells by streptolysin 
0-mediated permeabilization of the outer cell 
membrane, and glycosylated peptides in the ER 
were isolated from cell extracts with concanavalin 
A-Sepharose beads as described (24). Data are 
representative of three experiments in which de- 
viation was no more than 2 10%. 

as effective as in the closely related control 
221 cells and was more effective than in 
C1R cells (Fig. 2). 

To identify a functional defect, we ex- 
amined the assembly of class I molecules in 
220-B8 transfectant cells. The transient as- 
sociation of class I heavy chains with cal- 
nexin (IP90) was tested by immunoprecipi- 
tation of calnexin-glycoprotein complexes 
with the AF8 monoclonal antibody (mAb) 
from digitonin lysates of metabolically la- 
beled cells (12). SDS-polyacrylamide gel 
electrophoresis (SDS-PAGE) of these com- 
plexes gave similar band patterns for 220- 
B8 and C1R-B8 cells (Fig. 3A). The iden- 

tity of putative class I heavy chain bands 
was confirmed bv SDS dissociation of iso- 
lated calnexin complexes and secondary 
precipitation with mAb HC10, which binds 
free HLA-B and -C heavy chains (13). Af- 
ter pulse-labeling and chase, the intensities 
of the class I heavy chain bands decreased 
over the time of the chase at similar rates in 
the 220-B8 and C1R-B8 samples, which 
indicated their gradual dissociation from 
calnexin at the time of their association 
with p,M (Fig. 3B). 

We tested the peptide-dependent matu- 
ration of the class I heterodimers by quan- 
titation of stably conformed HLA-B8 mol- 

Fig. 3. Class I heavy chains associate normally ClR-B8 1 220-88 1 3 ,p with calnexin (IP90) in 220-88 cells, but class I 0 0.5 ;.s 3.0 o 0.5 1.5 3.0 P 
heavy chain-p2M heterodimers fail to efficiently v I 

capture peptides. (A) Calnexin-glycoprotein corn- A ga-- rr Ipgo 
plexes were isolated from 220-88 and ClR-B8 C* 

control cells immediately after pulse labeling (0 
hours), and at the indicated time points (0.5 to 3.0 
hours) after the chase, by immunoprecipitation HC 
from digitonin lysates with mAb AF8 (12, 21). The 
positions of HLA-B and -C heavy chains (HC) 
were identified by parallel direct precipitation with 
mAb HCl 0 from C1 R-B8 lysate (lane HC10). Like- 
wise, the single calnexin band (IP90) was identi- 
fied in a parallel precipitation, after disruption of B - - -- 
protein complexes from C1 R-B8 lysate with SDS 
(lane AF8). (B) Bona fide HLA-B8 and -C heavy 
chains were recovered from SDS-dissociated AF8 
immunocomplexes from reprecipitation with mAb 220-88 1 220 1 ClR-68 I C1R 
HClO (21). The intensities of the heavy chain 1 2  3 4  5 6  7 8 9 1 0 1 1 1 2  
bands decreased over the time of the chase at c 
similar rates in the C1 R-B8 and 220-88 lanes. (C) 
Mutant 220-88 cells contained unstable HLA-B8 
heterodimers that were stabilized by specific pep- a 
tide. Labeled HLA-B8 complexes were immuno- 
precipitated with mAb GSP8.1 from 220-88 and - 
C1 R-B8 cell lysates after dissociation for 1 hour 
(lanes 2 and 8) and overnight (lanes 3 and 9) at 
4°C (14, 25). The heavy chain-p,M heterodimers - 

82M 
from 220-88 cells dissociated rapidly but were 
stabilized when specific peptide was added to samples immediately after cell lysis (lanes 4 and 10) (1 6, 
25). GSP8.1 was specific for HLA-B8 as no bands were seen in the 220 and C1 R control lanes (lanes 6 
and 12) and was p2M-dependent (lanes 2 through 4). Large amounts of labeled free HLA-B8 heavy 
chains were precipitated with mAb HCl 0 from 220-88 and C1 R-B8 control lysates (lanes 1 and 7). Control 
lanes 5 and 11 show the amounts of HLA-C heavy chains bound by HC10 in lysates of untransfected 220 
and C1 R cells. 
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ecules after dissociation of unstable com- 
plexes in lysates of metabolically labeled 
220-B8 and C1R-B8 cells for 1 hour and 
overnight at 4OC (14). Samples were immu- 
noprecipitated with mAb GSP8.1, which 
bound HLA-B8-P2M complexes but not 
free heavy chains (15) (Fig. 3C). After 
SDS-PAGE, the HLA-B8 heavy chain and 
P2M bands in the 220-B8 lanes were of 
much lower intensity than those in the 
C1R-B8 lanes (Fig. 3C, lanes 2 and 3 and 8 
and 9), although similar amounts of radio- 
labeled heavy chains were present in all of 
the lysates (Fig. 3C, lanes 1 and 7). Thus, 
most of the HLA-B8 complexes from 220- 
B8 cells dissociated rapidly, whereas those 
from C1R-B8 cells were stable. However. 

.Fig. 4. Class I heterodimers fail to associate with 
TAP in mutant 220 cells. (A) Putative class I heavy 
chains were coprecipitated with TAP proteins by a 
TAP1 rabbit antiserum from digitonin lysates of 
several cell lines (1 7, 26). Only faint bands were 
seen in the lanes of 220-B8,220, and 174 (TAP-) 
cells. (B) After dissociation of the TAP-class I 
complexes and secondary precipitation with 
HCIO, the 220-B8, 220, and 174 lanes were al- 
most equally blank, although HLA-B and -C heavy 
chains were efficiently recovered in the other lanes 
(26). (C) Primary precipitations with HC10 showed 
the relative amounts of labeled HLA-B or -C heavy 
chains present in all of the cell lysates. (D) Bands 
corresponding to the TAP1 and TAP2 subunit 
proteins (lower and upper bands, respectively) (6) 
were missing only in lysate of 174 cells. (E) HLA- 
A1 and -G heavy chains were missing in TAP 
complexes isolated from 220-A1 and 220-G cell 
lysates after secondary precipitation with mAb 
HCA2, although they were efficiently recovered 
from TAP complexes isolated from the C1 R-A1 
and 221-G control cells. (F) In a parallel experi- 
ment, free heavy chains were bound by HCA2 in 
all cell lysates. 

they were effectively stabilized when a spe- 
cific HLA-B8 binding peptide was added to 
lysate of 220-B8 cells (1 6) (Fig. 3C, lane 4). 
Hence, most of the HLA-B8 complexes 
from 220-B8 cells were devoid of peptides 
and were capable of peptide binding in 
vitro. This indicated that properly folded 
HLA-B8 heterodimers failed to bind appro- 
priate peptides in 220-B8 cells. 

These results suggested a defect prevent- 
ing the access of class I heterodimers to 
peptides, possibly by abrogation of their 
ability to associate with TAP. Using a 
TAPl antiserum, we immunoprecipitated 
TAP-class I heterodimer complexes from 
digitonin lysates of metabolically labeled 
cells (4, 17). As expected, SDS-PAGE re- 
vealed putative class I heavy chains with a 
molecular mass of 44 kD that were copre- 
cipitated from ClR, C1R-B8, LCL 721.45, 
and LCL 72 1.11 2 cell lysates, but not from 
lysate of 174 cells (Fig. 4A). Bona fide 
HLA-B5 (45), -B8 (ClR-B8, 112), and -C 
(ClR) heavy chains were efficiently recov- 
ered from these complexes after SDS disso- 
ciation and reprecipitation with mAb 
HClO (Fig. 4B). By contrast, HLA-B8 and 
-C heavy chains were completely missing in 
TAP complexes from 220-B8 and 220 cells 
(Fig. 4, A and B), respectively, although 
control lysates contained normal amounts 
of radiolabeled heavy chains and of TAPl 
and TAP2 polypeptides (Fig. 4, C and D). 
Correspondingly, HLA-A1 and -G heavy 
chains were missing in TAP complexes 
from 220-A1 and 220-G cells, respectively, 
after secondary precipitation with mAb 
HCAZ, which effectively bound these 
heavy chains in primary precipitations and 
in parallel secondary precipitations from 
dissociated TAP complexes isolated from 
the control C1R-A1 and 221-G cells (13) 
(Fig. 4, E and F). Thus, all of the four 
diverse class 1 heterodimers tested failed to 
associate with TAP in 220 cells. This defi- 
ciency correlated with the incomplete as- 

Fig. 5. A gene or genes 
controlling the TAP- 
class I heterodimer in- 
teraction are linked to 
the MHC on chromo- 
some (chr.) 6. Stable 
transfer by microcell fu- 
sion of a human gpt- 220-88 (chr. 6) 
tagged chromosome 6 
from the mouse-human 
hybrid cell line RAGA 
into 220-B8 cells re- 

bhA 
stored surface levels of o 1 2 3 4 
HLA-B8 (lower filled log F'uorescence 
profile) that were as 
high as on the X2 hybrid cell line (upper filled profile) 
(19, 27). Open profiles are control stainings of 220 
and 220-88 cells. Cells were examined by indirect 
immunofluorescence with mAb GSP8.1 and flow 
cytometry (15). 
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sembly and reduced surface expression of 
the class I molecules in this mutant, because 
TAP-class I heterodimer complexes were 
reconstituted in the X2 hybrid of 220-B8 
and 174 cells (Fig. 4, A and B), in which 
large amounts of HLA-B8 at the cell surface 
were restored by transcomplementation 
(Fig. 1C). Thus, the ability of the class I 
heterodimers to bind peptides was highly 
dependent on their physical interaction 
with TAP, which was under distinct genetic 
control. 

Similar to all human TAP-deficient mu- 
tant cell lines, mutant 220 cells originated 
from MHC-hemizygous parental cells with 
a deletion ranging from 6p l l  to 6pter on 
the short arm of chromosome 6 that in- 
cludes the MHC at 6p21 (6-9, 18). A 
probable association of the genetic defect in 
220 cells with this hemizygous chromosom- 
al region was indicated by the spontaneous 
reversion of a 220-B8 x 174 hybrid cell line 
to the mutant 220-B8 phenotype concom- 
itant with loss of the single 174-derived 
MHC haplotype. With all of 60 individual 
revertants isolated by limiting dilution, 
small amounts of surface HLA-B8 correlat- 
ed with the absence of surface HLA-A2 and 
-B5 encoded in the MHC of 174 cells (9). 
This observation was directly confirmed by 
fusion of 220-B8 cells with microcells pre- 
pared from the mouse-human monochro- 
mosomal hybrid cell line RA6A, which 
contains a human chromosome 6 tagged 
with the guanine phosphorybosyl-trans- 
ferase (gpt)-dominant selectable marker 
(19). Isolates selected with mycophenolic 
acid for the stable maintenance of the 
transferred chromosome had large amounts 
of surface HLA-B8 (Fig. 5). Thus, a gene or 
genes controlling the TAP-class I het- 
erodimer interaction were linked to the 
MHC on chromosome 6, with a highly 
probable location between 6p l l  and 6pter 
on the short arm of this chromosome. 

These results demonstrate that class I 
heterodimers must associate with TAP to 
gain access to their natural cytosol-derived 
peptide ligands. This requirement may not 
be absolute, because thermostable class I 
molecules are present on the surfaces of 220 
transfectant cells cultured at 37OC. Howev- 
er, it is unknown whether the peptides 
bound by these molecules are of cytosolic 
origin, and a small proportion of class 1 
heterodimers may associate with TAP in 
220 cells. Because class I molecules are ca- 
pable of binding peptides experimentally 
introduced into the ER in a TAP-indepen- 
dent manner by fusion to a hydrophobic 
signal sequence (20), the failure of most 
class 1 heterodimers to bind peptides in 220 
cells indicates that peptides supplied by 
TAP are scarce in the lumen of the ER of 
normal cells. In previous transfections of 
220 cells, the surface amounts of some class 
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I molecules inconsistentlv varied \vithin 
wide ranges. These variances Lvere almost 
certainly the result of expression of the  class 
I heavy chains far ahove p11ysii)logical levels 
bec:luse of the use of nonintegrating episo- 
ma1 vectors and the  variation in the copy 
number of these constructs among diffrrent 
transfectants (8). O L I ~  results indicate that 
the TAP-class I interaction provides an  
aijaptive mechanism that promotes the ef- 
ficient capture of cytosolic peptides hy pre- 
sumably all iji\yerse class I heterodimers. 
This cornplex interaction is controlled by 
an uniilentified gene or genes linlced to the 
MHC, which encodes a n  accessory mole- 
cule (or molecules) that may regulate the  
ilelivery of class I heterodinlers to T A P  or 
their associ~t ion with T A P .  
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