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Discrete Cortical Regions Associated with and action because evidence from monkeys 
( 5 )  and humans (6-8) suggests that the 

Knowledge of Color and Knowledge of Action perception these attributes is mediated, 
in part, by discrete regions of the posterior 

Alex Martin,* James V. Haxby, Franqois M. Lalonde, cortex. In humans the syndrome of acquired 
Cheri L. Wiggs, Leslie G. Ungerleider color blindness, or achromatopsia, has been 

found after damage to the fusiform and 
The areas of the brain that mediate knowledge about objects were investigated by lingual gyri on the ventral surface of the 
measuring changes in regional cerebral blood flow (rCBF) using positron emission to- occipital lobes (6, 7), whereas acquired mo- 
mography (PET). Subjects generated words denoting colors and actions associated with tion blindness, or akinetopsia, follows a 
static, achromatic line drawings of objects in one experiment, and with the written names more dorsally located lesion at the junction 
of objects in a second experiment. In both studies, generation of color words selectively of the occipital, parietal, and temporal lobes 
activated a region in the ventral temporal lobe just anterior to the area involved in the (7, 8). Converging evidence that these re- 
perception of color, whereas generation of action words activated a region in the middle gions are specialized for the perception of 
temporal gyrus just anterior to the area involved in the perception of motion. These data color and motion, respectively, has been 
suggest that object knowledge is organized as a distributed system in which the attributes provided by functional brain imaging stud- 
of an object are stored close to the regions of the cortex that mediate perception of those ies of normal individuals (9, 10). Moreover, 
attributes. reports of patients with selective difficulty 

retrieving information about object-associ- 
ated color (2) or action (3), without corre- 
sponding deficits in perception, suggest that 

During our lifetimes we acquire knowledge tributes that define an object are represent- knowledge of these attributes also may be 
about a tremendous number of concrete ed close to the cortical regions that mediate mediated by distinct brain areas ( I  I). 
objects. This knowledge includes not just perception of those attributes. In the first study (12), achromatic line 
the name, but also the physical features We chose to study knowledge of color drawings of common objects were present- 
(form and color) and functional properties 
(uses) that define each object. When an 
object is seen or its name read, knowledge B C 
of these attributes is activated automatically 
and without conscious awareness (I). In 
addition, the ability to retrieve information 
about a specific attribute of an object can be 
selectively disrupted by a focal brain lesion 

El 
(2, 3). These findings suggest that object 
knowledge is stored in the brain as a dis- 
tributed network of discrete cortical areas 
(4). However, direct evidence for the exis- 
tence of such a network in the normal 
human brain has not been reported, nor Fig. 1. (A) Lateral view of the left hemisphere showing regions of increased rC& wnen suojecIs generated 
have the component areas of the network color words (green) and action words (gray) in comparison to object naming. Dark blue regions show areas 

heen identified. we ,.how, using positron of overlap. (B) Coronal section 50 mm posterior to the anterior commissure showing locations of bilateral 
fusiform and left parietal lobe activation during color word generation, and left temporal and parietal 

emission tomography (PET)' that the at- activations during action word generation. Shown are all pixels that exceeded a threshold of Z = 2.58 (P 
~ a b ~ ~ ~ ~ ~ ~ ~ f  psychology and psyc~opat~o~ogy, ~ ~ ~ i ~ ~ .  < 0.005, one-tailed). (C) Percent change in rCBF, relative to object naming, at the site of peak activity in the 
al Institute of Mental Health, Build~ng 10, Room 4C110, left middle temporal gyrus (open bar) (-50, -50, 0) and left fusiform gyrus (closed bar) (-46, -46, -1 2) 
10 Center Drive, MSC 1366, Bethesda, MD 20892-1366, shown in (B). Bars represent mean percent change in rCBF ? SEM. Analysis of variance indicated that 
USA. rCBF at these sites was modulated by the type of word that subjects generated [site X task interaction 
'To whom correspondence should be addressed. F(1,ll) = 21.66; P < 0.001]. 
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ed. During separate PET scans, subjects 
were required to name each object, to gen- 
erate the name of a color associated with 
each object (for example, a subject might 
say "yellow" when shown a picture of a 
pencil), and to generate the name of an 
action associated with each object (for ex- 
ample, "write" when shown a picture of a 
pencil) (13). Verbal response times record- 
ed during the scans confirmed that the col- 
or and action word generation tasks were 
equally difficult (14), thus assuring that dif- 
ferences in the brain regions activated by 
generating color and action words would 
not reflect differences in the amount of 
effort required to perform these tasks. 

Our strategy for analyzing the rCBF data 
(15) was first to compare each attribute 
word generation task to the same baseline 
condition (object naming). These compar- 
isons revealed areas of activation common 
to both attribute word generation tasks as 
well as the areas specifically activated by 
each task, over and above the amount of 
activation produced by object naming. The 
areas specifically activated by each attribute 
word generation task were confirmed by a 
second analysis in which the color and ac- 
tion word tasks were directlv contrasted 
with each other. 

In comparison to object naming, gener- 
ation of color and action words activated 
left prefrontal cortex, especially the dorso- 
lateral region, and left posterior parietal 
cortex (Fig. 1 and Table 1). These regions 
participate in distributed neural networks 
(16) that mediate specific language process- 
es, especially word retrieval (17), and atten- 
tional functions (18) and that would be 
expected to be engaged by both attribute 
generation tasks. 

In contrast, activation of other areas was 
dependent on the type of word generated. 
Within the temporal lobes, generation of 
color words, but not action words, produced 
bilateral activation ventrally on the fusi- 
form gyrus that was stronger in the left than 
in the right hemisphere, whereas generation 
of action words activated the left posterior 
middle and superior temporal gyri. Action 
word generation also produced increased 
rCBF in the left inferior frontal lobe (Bro- 
cays area) and in the right lateral cerebellum 
(Table 1). These word-specific patterns of 
activation were confirmed by comparison of 
the color and action word generation con- 
ditions to each other (Fig. 2). 

To  replicate and extend these findings, 
we ~erformed a second studv that was iden- 
tical to the first, except that the written 
names of the obiects. rather than line draw- , . 
ings, were presented. During different scans 
subjects read aloud, generated a color word, 
and generated an action word associated 
with the written name of each object. As in 
the first study, generating words denoting 

either colors or actions was equally difficult vations found in the first study. Relative to 
(19). Despite the change in stimulus from the action word generation condition, in- 
line drawings of objects to their written creased rCBF during color word generation 
names, the areas of increased activation was seen in the ventral portion of the right 
specifically associated with the word gener- temporal lobe (Fig. 2A). In contrast, rela- 
ation tasks were highly similar to the acti- tive to the color word generation condition, 

Table 1. Brain regions with significantly increased rCBF during generation of color and action words 
compared to object naming. Numbers in parentheses refer to the corresponding Brodmann's areas. 
Locations of peak activations are expressed in millimeters as coordinates in the Talairach and Tournoux 
brain atlas (28). x, medial-lateral axis (negative, left); y, anterior-posterior axis (negative, posterior); and z, 
dorsal-ventral axis (negative, ventral). 

Brain region x Y z Z score 

Color word generation minus object naming 
Frontal lobe 

Left middle frontal gyrus (819) -42 18 
Left middle frontal gyrus (45146) -38 30 
Left orbital frontal gyrus (1 1) - 24 32 

Parietal lobe 
Left inferior parietal gyrus (40) - 34 - 62 

Temporal lobe 
Left fusiform gyrus (37) -46 - 46 
Left parahippocampal gyms (35) -18 - 42 
Right fusiform gyrus (37) 44 - 48 

Thalamus 
Right pulvinar 6 - 28 

Action word generation minus object naming 
Frontal lobe 

Left inferior frontal gyrus (44/45) -42 12 
Left middle frontal gyms (6) -36 4 
Left Broca's area (44) -43 18 
Left middle frontal gyrus (9/10) -34 48 
Left inferior frontal gyrus (45147) -32 34 

Parietal lobe 
Left inferior parietal gyrus (40) -38 - 64 

Temporal lobe 
Left middle temporal gyrus (21/37) - 52 - 50 
Left middle temporal gyrus (37) - 46 - 60 
Left superior temporal gyrus (39) - 50 - 62 

Cerebellum 
Right lateral cerebellum 26 -68 

Fig. 2. (A) Ventral view of 
the brain showing re- 
gions of increased rCBF 
when subjects generat- 
ed color words in com- 
parison to generating 
action words. (B) Lateral 
view of the left cerebral 
hemisphere showing re- 
gions of increased rCBF 
when subjects generat- 
ed action words in com- 
parison to generating 
color words. Red indi- 
cates activations in re- 
swonse to line drawings 
of objects; yellow indicates activations in response to the written names of the objects; and blue indicates 
regions activated in both studies. Also shown are black (9) and green (10) circles centered on previously 
reported locations of maximum activity during the perception of color (A) and of motion (B). Maximum 
peaks of activity during color word generation (A) were in the fusiform gyri of the left (-42, -46, - 12) and 
right (+42, -42, -20) temporal lobes for the object study, and the fusiform (+50, -38, -12) and 
parahippocarnpal gyri (+28, -30, -16) of the right temporal lobe, and orbital frontal cortex (+12, +26, 
-12) for the word study (29). For action word generation (B) peak activations were in the left inferior 
frontal lobe (Broca's area) (-44, +6, +4; and -42, +18, +4), and in the middle (-50, -50, +4; and 
-54, -62, +8) and superior (-50, -52, +24; and -54, -38, +20) left temporal gyri during the 
object and word studies, respectively (30). Shown are all pixels that exceeded a threshold of Z = 2.58 
(P <0.005, one-tailed). 
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generation of action ivorils procluced in- 
creased activity of the  s a n e  reglolls of the 
left temporal lohe (posterior middle and 
s~~per io r  temporal gyri) and left illferior 
frontal lohe (Broca's area) to~llld for gener- 
ating action \vords to dra\vings of ol~jects 
(Fie. 2B). 

These res~llts provi~le strollg evidence 
that kno\vle~lee of colors and of actions is 
repwscnted in discrete cortical areas (22) .  
A distinctive feat~lre of l-7oth st~ldies is that 
respunses to stim~lli  that nere  achromatic 
and static ivere nevertheless associated ivith 
activations proximal to color and motion 
pacept~~al-processillg areas. 

Studies of n o n h ~ ~ m a n  primates (21 ) and 
PET studies of h~lmans (22) have sho\vn that 
obiect vision is lnediated hr- a l~ierarchicallv 
organi:ed ventral occipitotemporal path\vay 
that inc1~1Lles ilist~nct reglolls for processing 
visual feat~lres of ol~jects, s~ lch  as form and 
color. In the present st~ldy the areas of the 
temporal lohe specifically activate~l by re- 
trieving knoxvledge about ol~ject color vere 
in this object-processing stream. T h e  peaks 
of these activations \Yere 2 to 3 cm anterior 
to the site ot maximum activity in the fusi- 
for111 gyrus reporteci in p rev io~~s  PET st~ldies 
of color perception in n o r ~ l ~ a l  s~~h jec t s  (9,  
10) (Fig. 2.4). That  the action and color 
nord gelleratioll collditiolls required percep- 
tion and identification of the Tame objects 
suueests that the activation in the fi~slforrn ,- u 

region in the present st~ldy retlects its role in 
the represelltation of kno~vledge of object 
color, rather than of object fc)rm. Thus, dam- 
age to thls area may be necessary for p r o d ~ ~ c -  
illg color anomia or color agnosla (2).  

Stuciies of n o n h ~ ~ r n a n  primates (21 ) a n ~ l  
PET stuciles of h ~ ~ m a n s  (9 ,  19)  have also 
s l ~ o n n  that the perceptloll of lllotion 1s 
depen~lent,  in part, 011 a region ot the pos- 
terlor cortex that 1s Llorsal to the color 
\ , i s~on area. T h e  ~ieaks of the  actlvatlclns in 
the micldle telllporal gyrus ivhen s~lbjects 
oellerateil actlo11 xvords a.ere 1 ti, 2 cm 
anterlor to the site o t  maximum act ivat~on 
reporte~l in p r e v ~ o ~ ~ s  PET st~ldies of motlon 
p u c e p t ~ o n  in llormal s ~ ~ l ~ j e c t s  ( 9 ,  19) (Fig. 
2B). This miiidle tenlporal gyrus regloll may 
be, therefore. a critical site for stored 
knon.lee1ge alx>ut the visuirl patterns of 1110- 

t ~ o n  associated a l t h  the use of ob~ects .  In 
addition, relatlve to color xvorcl generation, 
gelleratlon o t  actloll norcis pro~luce~l  in- 
creased rCBF in Broca's area and the  right 
cerel~ellum, as reporte~l prev~ously ~n PET 
stc~cilcs of verl7 gellerarloll to presel-itatlon of 
printed aords  (23).  Dam,lge tcl Broca's area 
often a general dlsr~lption of 
speech characteri~eii hy a severe restriction 
of slllall f i~nction n.01-cis, such as preposi- 
tlol-is, ancl an impoverishment of grammat- 
ical forms, suggestil-ig tl-iat t h ~ s  reg1011 plays 
an inlportant role 111 speech productii)n anci 
grammar (24) .  Procluction ,111d comprel-ien- 

sion of verbs relative to n o ~ ~ n s  are often 
~11s~ro~-7ortion;111y affected in these patients 
(3) .  Our  data indicate that gener;rtion of 
action verbs increases activity ~n this region 
over anti above the le\rel p r o ~ l ~ ~ c e ~ i  by sim- 
ple naming, whereas color n.or~l generation 
does not. This aiiditional activation of Bro- 
ca's area may he relateil to the special role 
that verbs play 111 grammatical ~ e n t e n c e  
constr~~ct ions .  Action \vord generation ap- 
pears to activate a colllplex lle~lral netnork 
that may he related to 130th the  semantic 
aspects associated \\.it11 kno\vledge of 1110- 

tion (micliile temporal g y r ~ ~ s )  ant1 grammat- 
ical f~lnctions of verbs (Broca's area). 

Whereas PET st~ldies of vis~lal percep- 
tion have shon.n that acti\.ity in clifferent 
regions of the brain call be moclulated 1~y 
attelltion to different vis~lal feat~lres of a n  
object (19) ,  the present results inilicate that 
activity in difterent regions can he moilu- 
lated hy attelltion to kno\vlecIge about dif- 
ferent features (25) .  O L I ~  finclings suggest 
that object kno~vledge is stored as a ~listrih- 
uteci netnork of cortical regions anil that 
the orga~liratioll of these rcgiolls may close- 
ly parallel the  organi:ation of sensory, ancl 
k-7crl~aCs "1.0 motor, systems in the human 
brain (26).  W e  further suggest that the 
perception of objects a n ~ l  their n.ritten 
nallles a~~tomat ical ly  acti\,atcs a iviiiely ilia- 
trib~~tecl netivork that incl~l~les  the areas 
acti1.e d ~ ~ r i ~ l g  color ancl action ivor~i gener- 
ation, as \yell as site> that nlediate knon.1- 
edge of other object a t t r~ lx~ tes .  Activation 
of this net~vork occur? n . i t h o ~ ~ t  consc io~~s  
effort and lasts for only a lmef period of 
time (1) .  It remans to be cletermined 
nhether  this a~ltomatic activaticln can be 
detected by PET ciurlng ol~ject  mallllllg anil 
\vorcl rcaLling. Hon.ever, ~lifferent cclmpo- 
llellts of this network call 1.e ol7serveii 1iy 
reLqulrlllg s ~ ~ b j e c t s  to selectively attenel to 
a n ~ 1  retrieve knoivle~lge ahout a s~ng le  fea- 
ture or attri lx~te of a n  ohlect. 
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Dependence of Peptide Binding by MHC Class I 
Molecules on Their Interaction with TAP 

Andres G. Grandea Ill, Matthew J. Androlewicz, 
Raghbir S. Athwal, Daniel E. Geraghty, Thomas Spies* 

Major histocompatibility complex (MHC) class I molecules bind peptides that are delivered 
from the cytosol into the endoplasmic reticulum by the MHC-encoded transporter as- 
sociated with antigen processing (TAP). Peptide capture by immature heterodimers of 
class I heavy chains and p,-microglobulin may be facilitated by their physical association 
with TAP. A genetic defect in a human mutant cell line causes the complete failure of 
diverse class I heterodimers to associate with TAP. This deficiency impairs the ability of 
the class I heterodimers to efficiently capture peptides and results from loss of function 
of an unidentified gene or genes linked to the MHC. 

MHC class I molecules export peptides 
clerl~ed ii-i111-i cytosollc protein deqraii:~tlo~-i 
to the cell s~lrtace :~nii tl-icls e~-iahlc cytotoxic 
T cells to cletcct ~ntracellular ant1gel-i ( 1 ) .  
They consist of a memhr;li-ie-ancl~oi-eel ~lolv- 

L ,  

morphic c l aa  I h e a ~ y  chain, s o l ~ ~ h l c  P,- 

1 i c r l o 1 ~ 1 l i - i  (P2M), mii  a peptick ligancl 
of 8 to 1C amino acicls \\.it11 a11 allele- 
specific scclLlcnce motif (2) .  T h e  complete 
suh~lni t  , ~ ~ s e m h l y  of class I molec~~les  is LISLI- 

ally reouircii fix their confi~r~l-iational sta- , . 
hility, m : ~ t ~ ~ r a t i o n ,  , ~ n d  normal surface ex- 
prcskon anci involves accessilry nlolec~lles 
( 2 ) .  Up01-i ci-iteril-ig the  endoplasnlic retic- 
ulum (El?), i-ie~vly sY1-ithesized l-iu1llai-i class I 
heavy cl-iail-is arc retained hy c,~lnexin until 
they comhil-ie \\:it11 P2;CI (3) .  T h e  i i n m a t ~ ~ r e  
class I heavy chain-P7hl heterocllmers then 
associate with T A P  ti'ai~s~orters (4), \vl-iicl-i 
consist of tl-ie MHC-encoded TAP1 , ~ n d  
T A P 2  suh~lnits anci cieli~er the  pepticles 
that are mainlv b o ~ ~ n d  hv class I hct- 
eroiiimers from the  cytosol ~ n t o  the lumen 
of the  ER (5-7). This physical il-iteractioi-i 
may bc coupleil to pepticle binding b\ cl;~ss 

I l-ieterodimers, h e c a ~ ~ s c  iilssoclatlon fro111 
T A P  correlates cvit1-i theli- convers~on ~l-ito 
stably conformeci class I molcc~~les .  T ~ L I S ,  hy 
iilteracting ct71th T A P ,  class I heterodimers 
may gain access to pepticles hefore these 
may he clilutecl and possihly clegrai!eii 111 the  
l ~ ~ l n e i l  of the  ER. Hocvever, it is u11knoa.n 
whether this propi)secl mecl-ian~sm promotes 
peptide binLiing hy class I heterodimers in 
living cclls. 

In defining the  assemhly of class I mol- 
C C L I ~ C S ,  lllutai-it cell lii-ies- \\.it11 specific cic- 
fects l-ia\rc heen instrulnental. In the  human 
mutant ly~n~hol-ila~toici cell line ( L C L )  

721.220, an ~~~-ikilo\\ .n iiefcct imp,lirs the  
surface expression of class I molecules. 
These cells express functional PIM and 
T A P ,  ,IS iniiicatcd hy t ra~- iscon~pleme~~ta-  
tion of Daudi (PLMp) and mutant LCL 
721.1 74 (TAPp) cclls after f~~siol-i (8). 
These cells have heen isolated after repeat- 
cci mutagcnesis and selectioi-i agaii-ist the 
surface class I molec~llcs encoded in a hem- 
i~ygous M H C ,  rcsultlngj in deletion of 
HLA-A anii -B and ~n'teil~iceii surface levels 
of HLA-C (9 ) .  Hocvcver,. as \\,it11 H L h - C ,  
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