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P’'P’ Precursors Under Africa: Evidence for
Mid-Mantle Reflectors

Yves Le Stunff,” Charles W. Wicks Jr., Barbara Romanowicz

Observations of precursors to P'P’ from a recent exceptionally large deep earthquake in
the Fiji Islands (moment magnitude = 7.6) at an array of broadband stations in California
revealed mid-mantle reflectors near depths of 785 kilometers and 1200 kilometers under
the southern African rift. Such observations, previously reported primarily in subduction
zones, suggest that these reflectors may have a global character. Our analysis, which also
indicated a sharp, uplifted 670-kilometer discontinuity, demonstrates the power of sparse
regional broadband arrays for the study of weak, frequency-dependent features in deep-

Earth structure.

Several studies around 1970 suggested the
existence of steep velocity gradients or dis-
continuities at various depths in the Earth’s
mantle (830 km, 900 km, and 1200 km)
and in various regions (1-3), but reference
global Earth models developed since the
1970s have not found a compelling need for
any of them. More recently, contrasts in
seismic velocity or impedance have been
identified near subduction zones at depths
of 900 km (4-6) and 1200 km (6). The
observation of precursors to PKPPKP (P'P’)
has allowed investigation of mantle discon-
tinuities of regions like Antarctica and the
mid-Indian Ocean ridge with some success
(2, 7, 8), but so far continents have been
poorly sampled. The array-processing tech-
niques appear to be the best for the detec-
tion of these phases (9—11); they enable us
to suppress ambient noise and properly es-
timate the slowness of the seismic phases.
On 9 March 1994, a deep earthquake
occurred in the Fiji islands [latitude,
—18.039; longitude, —178.413; depth, 563
km; origin time, 23:28:06.7; moment mag-
nitude (M), 7.6], the largest in this region
since the deployment of new generation
broadband stations worldwide. This event
was recorded on 22 broadband stations in
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California (Fig. 1A). The location of the
surface bounce points of P'P' follows a
northeast-southwest trend south of Lake
Tanganyika in a region where the African
Rift is bending in a southeastern direction
toward the Lake Malawi region (Fig. 1B).
We now demonstrate the potential of the
sparse broadband network to detect and
characterize, in a wide frequency band,
weak phases such as precursors to P'P" and
identify discontinuities in the mantle. We
use observations of the same event on the
dense California short-period arrays (Fig.

‘TA) [Northern California Seismic Network

(NCSN) and Southern California Seismic
Network (SCSN)] to check the validity of
the broadband observations in the common
frequency band (0.2 to 5 Hz).

P'P’ precursors have previously been ob-
served at epicentral distances of ~70° for
which P'P’ usually has high amplitude giv-
en the temporal proximity of arrivals of
different core branches. Qur stations lie in a
range from 76.4° to about 80.2° where only
the DF branch (which travels through the
inner core) is expectéd to be seen. As our
ray tracing experiments demonstrate (Fig.
2), this is an ideal distance range to look for
mantle discontinuities at depths of 650 to
1100 km.

We stack the broadband (BB) and the
short period (SP) arrays using three differ-
ent bandpass filters: 3.5 to 12's, 2.5 to 4 s,
and 1.5 to 3 s (Fig. 3). In the bandpass 3.5
to 12 s for the BB stack (Fig. 3A), there are



two main energy arrivals, at about 245 s and
180 s before P'P’. We have tried to explain
these phases in terms of standard phases
(like PcPPKP or SKKP), but none of our
ray-tracing experiments was successful in
matching slowness or arrival time. P'P’ pre-
cursors reflected at a depth of about 1180
km and 785 km match the arrival times as
well as the observed differential slownesses
(1.3 s per degree for the first arrival, mainly
BC branch, and 2.0 s per degree for the
second one, mainly AB and BC branches)
(Fig. 2B). In the SP stack for the same
frequency band (Fig. 3D), one single phase
is clear and common to both stackings: the
P'785P" phase. A comparison of spectral
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Fig. 1. (A) Geographical distribution of recording
stations. Circles are BB stations (11 Berkeley Dig-
ital Seismic Network and 11 TERRAscope sta-
tions). Dots are 342 SP stations of the SCSN and
NCSN. The SP arrays have previously been used
for P'P’ precursor studies (73). (B) Source-receiv-
er geometry. The enlarged plot shows surface
bounce points near the southeastern extension of
the African Rift. Corresponding names of BB sta-
tions in California are indicated.
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arrival corresponds to the DF branch of a
precursor reflected at a depth of 655 km.
For this depth, this is the main expected
phase (Fig. 2B). In this frequency range,
there is again energy arriving about 180 s
before the main phase (P'785P’) with a
slowness comparable to that at lower fre-
quency (Fig. 3A). Little energy is seen at

amplitudes of linear stacks shows (Fig. 4)
that no signal is recorded on the SP instru-
ments above 5 s, providing a possible expla-
nation why the 1180-km reflection cannot
be seen on the SP stack. At slightly higher
frequency (Fig. 3B), the main phase appears
about 149 s before the main P'P’ arrival.
The differential slowness suggests that this
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deep earthquake for different bouncing depths.
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(focal distance) for a given P'P’ precursor reflec- Epicentral distance (degrees)

tion depth. The two horizontal lines indicate the epicentral range of this study. Vertical dashes correspond
to mantle discontinuities. The caustic area is reached for P'P’ precursors bouncing between 670 and
1070 km; even if the reflection coefficient is small, precursors may be observable for deep discontinuities.
(B) Slowness (s/degree) as a function of epicentral distance (degrees) for three different bounce point
depths. Names of different branches are marked on the top panels of each plot. Vertical lines indicate the
distance range of our observations. Discontinuities above 600 km (like the 400-km discontinuity) would
be difficult to observe unless their reflection coefficients are particularly high.
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(35). BB stacks are on
the left (A to C) and SP
stacks are on the right (D
to F). The square of am-
plitude is plotted as a
function of time (s) and
slowness (s/degree) rel-
ative to the arrival of PP’
across the array. Vertical
color bars indicate the
ratio of the maximum
precursor stacked am-
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stacked amplitude. Data
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and D), 25104 s (B and 1 .°
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with respect to the P'P’ phase. Bars on the x axis indicate theoretical arrival times for precusors (from left
to right: 1180 km, 785 km, 655 km, and 400 km). The stacks are exceptionally clean in the interval
between 400 and 50 s before P'P’. The ratio obtained through stacking 342 SP stations is about
one-third lower than with the BB stations (36), which is not the case with linear stacking. No energy arrival
is seen near the theoretical arrival corresponding to a reflector of ~670 km, in either stack, for the
low-frequency window (A and D). No significant energy is observed in any of the frequency bands from a
discontinuity near 400 km, in agreement with what is predicted from Fig. 2. This absence may be also
explained by topography on this discontinuity (77).
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~245 s before P'P’, indicating a frequency
dependence of the phase P'1180P’ observed
in Fig. 3A. The SP stack (Fig. 3E) is com-
parable to the BB stack.

In the period range 1.5 to 3 s (Fig. 3, C
and F), the P’655P’ arrival, 149 s before
P'P’, is the dominant phase. This observa-
tion confirms that this event is particularly
energetic and that the source-array geome-
try is highly favorable. Little energy is seen
at ~245 s and 180 s.

The frequency dependence of the ob-
served energy arrivals may indicate that
the corresponding mid-mantle reflectors
have some topography or variations in
thickness (11). To investigate this further,
we grouped our stations in different clus-
ters and looked in the highest frequency
range (1.5 to 3 s) for possible energy ar-
rivals at ~250 s. We found a regional
clustering following a roughly north-south
trend (Fig. 5) with consistent, clear energy
arrivals. The most characteristic feature is
a variation, for BB and SP stacks, in ar-
rival times with clustering for the 1180-
km reflected phases (up to 6 s between
cluster 1 and cluster 3), implying a varia-
tion of the reflector depth (of 30 km).
This variation is not observed for the 655-
precursor and is therefore difficult to ex-
plain in terms of varying near-station or
surface bounce-point effects. The 785-pre-
cursor is not observed at this frequency.
The energy arrivals have a slowness that
differs by 1.3 s per degree from the obser-
vation at lower frequency, where another
branch (BC) was observed (Fig. 2B). We
estimate that a dip of 4° to 6° on the
interface (to northwest, that is, in the
direction of the azimuthal plane) could
result in this shift in apparent differential
slowness (the BC branch being reflected
as a DF branch at the interface). This dip
corresponds to 30 km of topographic vari-

Spectral amplitude
o
o

) 5 10 15
Period (s)

Fig. 4. Amplitude spectra for SP (dashed line) and
BB (solid line) linear stacks bandpassed between
3.5and 12 s (compare Fig. 3, Aand D). No energy
is detected by SP instruments above 5 s, whereas
the BB signal has a broader frequency content.
This may explain the absence of the P'1180P’
phase in the SP stacks. The spectra of these in-
struments are comparable in the other frequency
windows of Fig. 3.
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ation in a distance of 400 km, essentially
the same variation inferred from the trav-
el-time differences shown in Fig. 5.

The BB complete stacks show an unex-
pected observation of the 670-km discon-
tinuity. It is observed in the range 1.5 to 3
s, implying a sharp discontinuity [less than
5 km (12)] in agreement with other SP
observations (10, 13). The fact that ener-
gy is not observed in the lowest frequency
range implies a more complicated zone, in
which a sharp discontinuity might be as-
sociated with a high-velocity gradient
zone (14-16) (creating low-frequency de-
structive interference) or where large-
scale topography implies defocusing of the
waves (I11). The clustering experiment
suggests, however, no significant local to-
pography. The estimated depth (655 km)
is obtained with the radially symmetric
IASP91 model (17). However, lower than
average velocities in the uppermost man-
tle may exist under south central Africa, as
indicated by arguments in favor of a rift
continuation in this region, on the basis of
seismicity (18, 19) and heatflow measure-
ments (20). Recent tomography models
also display a slower than average mantle
in the topmost 300 km in this area (21).
Therefore, an actual depth as shallow as
650 to 645 km is not excluded, in agree-
ment with results by Shearer and Masters
(22), although these authors had poor res-
olution in this region. Given the negative
Clapeyron slope of the 670-km disconti-
nuity (23), this result would imply a hotter
than average mantle in the region of our
bounce points.

It is unlikely that the energy arrivals,
interpreted as P'785P’ and P'1180P’, would

Fig. 5. Regional stacks for three
clusters of stations, in the highest
frequency range of Fig. 3(1.5t0 3
s) for time windows from 265 to
235 s. The first column shows the
different clusters, the second and
third columns, the corresponding
BB and SP stacks, respectively.
Although the stacks are noisier
than in Fig. 3 for the BB stations
(because fewer stations are used
in each of them), they do show
consistent main arrivals between
300 and 50 s before the P'P’ ar-
rival. Vertical bars indicate theo-
retical arrival times for precursors.
Arrows indicate arrivals identified
as corresponding to P’1180P’.
The amplitude varies as a function
of the number of stations because
of the nonlinearity of the stack.
This is seen when comparing BB
and SP stacks, but also SP
stacks for C1 and C3 where 1108
and 35 stations, respectively, are
used. BB and SP stacks are sim-

be due to scatterers near the core mantle
boundary, given their early arrival times in
front of the main P'P’ phase and the size of
the array (24). The frequency dependence
of the 785-km reflector suggests that the
reflector is rather sharp and has a maximum
thickness of 7 to 10 km. The nature of this
reflector is not clear. It could be related to
observations in the same depth range in
other regions, such as in the northeastern
Pacific, near 830 km (I). More recently,
Petersen et al. (5) have observed S-wave
impedance contrasts and Kawakatsu and
Niu (4) have observed S-wave velocity con-
trasts at depths of ~900 km in subduction
zones. Relatively large depth differences
(~50 km) are apparent in adjacent areas
(4, 6), implying significant topography.
The region of study could be the site of hot
upwellings, possibly related to the “great
south African plume” (25), seen as a broad
zone of very low velocities in the lowermost
mantle in recent tomographic models (26—
28). The uplifted “900 km discontinuity”
described here would then indicate a
strongly negative Clapeyron slope, if it is a
phase change (29).

The deepest reflector seems rather com-
plicated. Low-frequency observations imply
a maximum thickness of 20 to 25 km. The
fact that, at higher frequencies, this reflec-
tor is seen on subarrays but not on complete
stacks, is an indication of a complex struc-
ture with some sharp features. It is possible
that the absence of high frequencies on the
complete stacks is due to defocusing of en-
ergy caused by a dipping interface or that
we are looking at a zone of random reflec-
tors or scatterers. The similarity of the
depth range of these reflectors with obser-
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vations of a discontinuity near 1150 km in
subduction areas [(3, 6), for example] indi-
cates that this may be a global feature of yet
unknown nature.

The observation of reflectors at mid-
mantle depths comparable to those in sub-
duction zones, but in a different environ-
ment, indicates that a search for yet un-
identified mineral assemblages of global
significance may be worthwhile. Recent ex-
periments have shown the possible exis-
tence of phase transitions at lower mantle
conditions: orthorhombic-to-cubic silicate
perovskite (30) and rutile SiO, to CaCl,
structure (31). The role and proportions of
volatiles such as water or carbon dioxide in
the mantle remain largely unknown and
could be of importance (32).

Additional seismic observations with
the great resolving power of BB arrays
should help answer the question of the
global character of our observations.
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Coherent Laser Control of the Product
Distribution Obtained in the
Photoexcitation of HI

Langchi Zhu, Valeria Kleiman, Xiaonong Li, Shao Ping Lu,*
Karen Trentelman,i Robert J. Gordoni

Active control of the distribution of products of a chemical reaction was demonstrated by
using a method based on the principle of quantum mechanical interference. Hydrogen
iodide (HI) molecules were simultaneously excited above their ionization threshold by two
competing pathways. These paths were absorption of three ultraviolet photons of fre-
quency w, and one vacuum ultraviolet photon of frequency w, = 3w,. The HI* and I
signals were modulated as the phase between the lasers was varied, with the HI* signal
lagging by 150° + 15°. A mechanism consisting of autoionization and predissociation is

proposed.

A fundamental goal in synthetic chemistry
is to develop methods for maximizing the
yield of a desired compound while reducing
the vyields of unwanted by-products. The
traditional approach to this problem is to
modify the experimental conditions (such as
temperature, pressure, or pH) so as to opti-
mize the product distribution. This is a pas-
sive strategy in that it relies on the natural
response of the chemical system to external
conditions, and there is no guarantee that
there exist conditions that could produce
the desired result. For example, one may
wish to photodissociate the stronger of two
bonds in a molecule. Although for some
molecules it may be possible to find wave-
lengths of light that can accomplish this task
(1), for many others the weakest bond
breaks preferentially at any wavelength.

In recent years, a number of strategies
have been proposed to achieve more active
control of chemical reactions (2). The cen-
tral idea is to manipulate the reacting mol-
ecule with electromagnetic fields, which al-
low the experimenter to guide the molecule
along the desired reaction path. We report
here active experimental control of the dis-
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tribution of products in a chemical reaction.

One approach for controlling chemical
reactions, developed by Tannor, Rice, and
co-workers (3), is to excite a molecule with
a sequence of ultrashort light pulses. This
method has been used, for example, by Ger-
ber and co-workers (4) to control the ion-
ization and fragmentation of Na,.

Another approach to -active control is
based on the principle of quantum-mechani-
cal interference. This principle states that if
there exist more than one independent way of
reaching a final state, the overall probability
of reaching that state includes the probabili-
ties of the individual paths and contributions
arising from interference between them. The
best known example of this principle is the
interference of particles passing through a pair
of slits before hitting a screen. The intensity of
particles reaching some point on the screen is
the sum of the intensities obtained from each
slit independently, plusrantnterference term
that depends on the relative distance of the
point from the two slits.

The photochemical analog of the two slit
experiment was first proposed by Brumer and
Shapiro (3). Their strategy involves the si-
multaneous excitation of a molecule by two
different pathways connecting the same ini-
tial and final states. The probability for each
independent transition is given by:

Pn o |<\I}f|©n|\1}i>|z (1)
where s, and U, are the time-independent
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