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An Internal Model for Sensorimotor Integration 
Daniel M. Wolpert," Zoubin Ghahramani, Michael I. Jordan 

On the basis of computational studies it has been proposed that the central nervous 
system internally simulates the dynamic behavior of the motor system in planning, control, 
and learning; the existence and use of such an internal model is still under debate. A 
sensorimotor integration task was investigated in which participants estimated the lo- 
cation of one of their hands at the end of movements made in the dark and under externally 
imposed forces. The temporal propagation of errors in this task was analyzed within the 
theoretical framework of optimal state estimation. These results provide direct support for 
the existence of an internal model. 

T h e  notion of an internal model, a system 
that mimics the behavior of a natural pro- 
cess, has emerged as an Important theoretical 
concept in motor control ( I  ). There are two 
varieties of the internal model: (i) forward 
models, which mimic the causal flow of a 
process by predicting its next state (for ex- 
ample, position and velocity) given the cur- 
rent state and the motor command: and iii) . , 

inverse models, which invert the causal flow 
by estimating the motor command that 
caused a oarticular state transition. Forward 
models have been shown to be of potential 
use for solving four fundamental problems in 
computational motor control. First, the de- 
lays in most sensorimotor loops are large, 
makine feedback control too slow for r a ~ i d  " 

movements. With the use of a forward model 
for internal feedback, the outcome of an 
action can be estimated and used before 
sensory feedback is available (2 ,  3). Second, 
a forward model is a key ingredient in a 
system that uses motor outflow (also called 
efference copy) to anticipate and cancel the 
sensory effects of movement (also called re- 
afference) (4). Third, a forward model can 
be used to transform errors between the de- 
sired and actual sensory outcome of a move- 
ment into the c o r r e s ~ o n d i n ~  errors In the - 
motor command, thereby providing appro- 
priate signals for motor learning (5). Simi- 
larly, by predkting the sensory outcome of 
the action without actually performing it, a 
forward model can be used in mental Drac- 
tice to learn to select between possible ac- 
tions (6). Finally, a forward model can be 
used for state estimation in which the mod- 
el's prediction of the next state is combined 
with a reafferent sensory correction (7). Al- 
though shown to be of theoretical use, the 
existence of an internal forward model in the 
central nervous system (CNS) is still a topic 
of debate. 
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When we move an arm in the absence of 
visual feedback, there are three basic meth- 
ods the C N S  can use to obtain an estimate 
of the current state-the position and ve- 
locity-of the hand. The system can make 
use of sensory inflow (the information 
available from proprioception), it can make 
use of integrated motor outflow (the motor 
commands sent to the arm), or it can com- 
bine these two sources of information by use 
of a forward model. T o  test between these 
possibilities, we carried out an experiment 
in which participants, after initially viewing 
one of their arms in the light, made arm 
movements in the dark. Three experimen- 
tal conditions were studied, involving the 
use of null, assistive, and resistive force 
fields. W e  assessed the participants' internal 
estimate of hand location by asking them to 
localize visually the position of their hand 
at the end of the movement (8). The  bias of 
this location estimate, plotted as a function 
of movement duration, shows a consistent 
overestimation of the distance moved (Fig. 
1). This bias shows two distinct phases as a 
function of movement duration: an initial 
increase reaching a peak 6f 0.9 cm after 1 s 
followed by a sharp transition to a region of 
gradual decline. The  variance of the esti- 
mate also shows a n  initial increase during 
the first second of movement after which it 
plateaus at  about 2 cmZ. External forces had 
distinct effects on the bias and variance 
propagation. Whereas the bias was in- 
creased by the assistive force and decreased 
by the resistive force, the variance was un- 
affected. 

These experimental results can be fully 
accounted for if we assume that the motor 
control system integrates the efferent out- 
flow and the reafferent sensory inflow. T o  
establish this conclusion, we developed an 
explicit model of the sensorimotor integra- 
tion process, which contains as special cases 
all three of the methods referred to above 
(9). This model is based on the observer 
framework (7) from engineering in which 
the state estimator (or observer) has access 
to both the inputs and outputs of the system. 
Specifically, the input to the arm is the 
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motor command and the output is the sen- 
sory feedback that, in the absence of vision, 
consists solely of proprioception. O n  the ba- 
sis of these two sources, the observer produc- 
es an estimate of the state of the system. In 
particular, we chose to use a Kalman filter 
(10) observer, which is a linear dynamical 
system that produces an estimate of the lo- 
cation of the hand by using both the motor 
outflow and sensory feedback in conjunction 
with a model of the motor system. Using 
these sources of information, the model es- 
timates the arm's state, integrating sensory 

and motor signals to reduce the overall un- 
certainty in its estimate. 

The model is a combination of two pro- 
cesses that together contribute to the state 
estimate. The first process (upper part, Fig. 
2A) uses the current state estimate and mo- 
tor command to predict the next state by 
simulating the movement dynamics with a 
forward model. The second process (lower 
part, Fig. 2A) uses a model of the sensory 
output process to predict the sensory feed- 
back from the current state estimate. The 
sensory error-the difference between actual 
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Fig. 1. The raw localization bias 
against movement duration is 
shown in (A) for all eight participants. 
There are few data points for short 
movement durations because of the '= 
reaction time of stopping in re- 
sponse to the tone. All graphs are 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 
therefore plotted from 0.5 s .  (B Time (s) Time (s) 
through E);The main effect fits of the 
generalized additive model to the data. The propagation of the (6) bias and (C) variance of the state 
estimate is shown, with outer standard error lines, against movement duration. The differential effects on 
(D) bias and (E) variance of the external force, assistive (dotted lines) and resistive (solid lines), are also 
shown relative to zero (dashed line). A positive bias represents an overestimation of the distance moved. 
The difference in variance propagation between the resistive and assistive fields was not significant over 
the movement; the difference in bias was significant at the P = 0.05 level. 

Fig. 2. (A) The Kalman filter model 
is shown schematically, consisting 
of two processes. The first (upper 
part) uses the motor command and 
the current state estimate to 
achieve a state estimate using the 
forward model to simulate the 
arm's dynamics. The second pro- 
cess (lower part) uses the difference 
between expected and actual sen- 
sory feedback to correct the for- 
ward model state estimate. The rel- 
ative weighting of these two pro- 
cesses is mediated through the 
Kalman gain. (B through E) Simulat- 
ed bias and variance propagation, 
in the same representation and 
scale as Fig. 1 ,  B through E, from 
the Kalman filter model of the sen- 
sorimotor integration process. 
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and predicted sensory feedback-is used to 
correct the state estimate resulting from the 
forward model. The relative contributions of 
the internal simulation and sensory correc- 
tion processes to the final estimate are mod- 
ulated by the Kalman gain so as to provide 
optimal state estimates. By making particular 
choices for the oarameters of the Kalman 
filter, we were able to simulate motor out- 
flow-based estimation (1 I ) ,  sensory inflow- 
based estimation. and forward model-based 
sensorimotor integration. Moreover, to ac- 
commodate the observation that partici- 
pants generally tend to overestimate the dis- 
tance that their arm has moved, we set the 
gain that couples force to state estimates to a 
value that is larger than its veridical value 
(12). All other components of the internal 
model were set to their veridical values. 

The  Kalman filter model demonstrates 
the two distinct phases of bias propagation 
observed (Fig. 2, B through E). By overes- 
timating the force acting on the arm, the 
forward model overestimates the distance 
traveled, an integrative process eventually 
balanced by the sensory correction. The  
model also captures the differential effects 
on  bias of the externally imposed forces. By 
overestimating an increased force under the 
assistive condition, the bias in the forward 
model accrues more rapidly and is balanced 
by the sensory feedback at a higher level. 
The  converse applies to the resistive force. 
The  pattern of variance propagation is also 
captured by the model. The variance of the 
state estimate derives from two sources of 
variance in the svstem: the first is the vari- 
ability in the response of the arm to the 
motor commands and the second is the 
noise in the subsequent sensory feedback. 
Initially, when the hand is in view, the state 
estimate is assumed to be accurate. The  
accuracy of the predictiori from the forward 
model comoonent of the Kalman filter de- 
pends on the accuracy of the current state 
estimate (one of its inputs). Therefore, dur- 
ing the early part of the movement, when 
the current state estimate is accurate, the 
sensorimotor integration process weights 
heavily the contribution of the forward 
model to the final estimate. However, in 
the later stages of the movement, when the 
current state estimate is less accurate, the 
sensory feedback must be relied on to cor- 
rect for inaccuracies in the forward model. 
In the Kalman filter, the relative weighting 
shifts from the forward model toward sen- 
sory feedback over the first second of move- 
ment and then remains approximately con- 
stant, resulting in the asymptote of the vari- 
ance propagation. In accord with the exper- 
imental results, the model predicts no 
change in variance under the two force 
conditions. 

We have shown that the Kalman filter is 
able to reproduce the propagation of the 
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bias and variance of estimated position of 
the hand as a function of both movement 
duration and external forces. The Kalman 
filter model suggests that the peaking and 
gradual decline in bias is a consequence of a 
trade-off between the inaccuracies accumu- 
latine in the internal simulation of the - 
arm's dynamics and the feedback of actual 
sensory information. Simple models that do 
not trade off the contributions of a forward 
model with sensory feedback, such as those 
based purely on sensory inflow or on motor 
outflow, are unable to reproduce the ob- 
served pattern of bias and variance propa- 
gation (1 3). The ability of the Kalman filter 
to parsimoniously model our data suggests 

of the movement. Eight untrained male participants, 
who gave their informed consent, performed 300 trials 
each. Each trial started with the participant visually plac- 
ing his thumb at a target square projected randomly on 
the movement line. The arm was then illuminated for 2 s, 
thereby allowing the participant to perceive visually his 
initial arm configuration. The light was then extin- 
guished, leaving just the initial target. The participant 
was then required to move his hand slowly either to the 
left or right, as indicated by an arrow in the initial starting 
square. This movement was made in the absence of any 
visual feedback of the participant's arm configuration. 
The participant was instructed to move until he heard a 
tone, at which point he stopped. The timing of the tone 
was controlled to produce a uniform distribution of path 
lengths from 0 to 30 cm. During this movement, the 
participant moved either in a randomly selected null or 
constant assistive or resistive force field of 3 N generat- 
ed by the torque motors. Although it is not possible to 
directly probe a participant's internal representation of 
thestateof his arm, weexamined afunction ofthis state: 

that the processes embodied in the filter- the estimated visual location of the thumb. The relation 

namely, internal simulation through a for- between the state of the arm and the visual coordinates 
. . of the hand is known as the kinematic transformation IJ. 

ward model together with sensory correc- Craig, Introduction to Robotics (Addison-Wesley, ~ e a d -  
tion-are likelv to be embodied in the sen- ing, MA, 198611. Therefore, once at rest the participant 

indicated the visual estimate of the unseen thumb posi- sorimoror process We that tion using a trackball. held In his other hand, to move a 
the results of this state estimation study cursor projected in the plane of the thumb along the 
~rovide evidence that a forward model is movement line. The discrepancy between the actual 

used by the CNS in maintaining its esti- 
mate of the hand location. Furthermore, 
the state estimation paradigm provides a 
framework to study the sensorimotor inte- 
gration process in both normal and patient 
populations. The model predicts monoton- 
ically increasing bias and variance, if the 
afferent signal is eliminated, and under- 
shoot rathei- than overshoot in bias propa- 
gation if the forward model is eliminated. 
These specific predictions can be tested in 
both patients with sensory neuropathies, 
who lack proprioceptive reafference, and 
patients with damage to the cerebellum, a 
proposed site for the forward model (3). 
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i ( t )  = h ( t )  + &(t) + K(t)[y(t) - Cic(t)] - -  
Forward model Sensory correction 

where K(t) is the recursively updated gain matrix. This 
state estimate combines an estimate from the inter- 
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