
A-MuLV-transformed pre-B cells resulted 
from the activation of Jakl and Jak3 in the 
absence of cytokines. Jakl and Jak3 were 
activated in Clone K cells treated with IL-7. 
whereas in A-MuLV-transformed pre-B cell 
lines, these kinases were constitutively ac- 
tive (Fig. 3 )  (1 1 ). In pre-B cells transformed 
with a temperature-sensitive mutant of v-abl, 
Jakl  and Jak3 were active at permissive tem- 
peratures, and upon a shift to nonpermissive 
temperatures, they became inactive (Fig. 3). 
Thus, in A-MuLV-transformed pre-B cells, 
the activities of Jakl and Jak3 correlate with 
that of the v-Abl protein tyrosine kinase. 

We next investigated the possible inter- 
action between v-Abl and Jakl  or Jak3. Jakl  
or Tak3 was immuno~reci~i tated from ex- . L 

tracts of pre-B cells expressing the tempera- 
ture-sensitive mutant of v-Abl. The v-Abl 
protein was detected in Jakl and Jak3 im- 
mune complexes (Fig. 4) (21). Jakl was also 
detected in v-Abl immunoprecipitates (Fig. 
4B). These observations were confirmed 
with several other antibodies to Jakl and 
Jak3 (1 1 ). We were unable to coimmunopre- 
cipitate either Jakl or Jak3 with the 150-kD 
c-Abl protein in the non-A-MuLV-trans- 
formed pre-B cell line Clone K (Fig. 4). 

Two models have been proposed for the 
mechanism of growth factor independence 
in cells transformed by oncogenic forms of 
Abl (5, 7, 22, 23). According to one mod- 
el, v-abl may increase the synthesis of RNAs 
encoding cytokines. Secreted cytokines 
could then bind their receDtors and trans- 
duce their signals. Alternatively, v-Abl may 
abrogate the need for cytokines to bind to 
their receptors by interacting with compo- 
nents of cytokine signal transduction path- 
ways. In an attempt to distinguish between 
the two models, we assessed the amount of 
RNA encoding IL-4 and IL-7 in the pre-B 
cells transformed with the temperature-sen- 
sitive mutant of v-abl. W e  were unable to 
detect IL-4 or IL-7 mRNAs bv reverse tran- 
scription-polymerase chain ieaction (RT- 
PCR) in these cells (1 1 ). In addition, su- . , 

pernatants from cultures of A-MuLV-trans- 
formed pre-B cell lines did not induce 
G A S  binding activities in Clone K cells 
(11). Although, we cannot exclude the 
possibility that these transformed cells 
produce other cytokines, the lack of 
mRNA for IL-4 and IL-7 and our observa- 
tion that Jakl  and Jak3 coimmunoprecipi- 
tate with v-Abl are consistent with the 
latter model. Our results suggest that A-  
MuLV constitutivelv activates the IL-4 
and IL-7 signaling pathways. Constitutive 
activation of Iak-STAT signaling has also " " 

been observed in T cells transformed with 
human T cell leukemia virus-I (24). Ac- 
tivation of cytokine signal transduction 
pathways might be a mechanism by which 
some transforming viruses induce prolifer- 
ation of their target cells. 
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Lateral Interactions in Primary Visual Cortex: 
A Model Bridging Physiology and Psychophysics 

Martin.Stemmler,* Marius Usher,-i-Ernst NieburS 

Recent physiological studies show that the spatial context of visual stimuli enhances the 
response of cells in primary visual cortex to weak stimuli and suppresses the response 
to strong stimuli. A model of orientation-tuned neurons was constructed to explore the 
role of lateral cortical connections in this dual effect. The differential effect of excitatory 
and inhibitory current and'noise conveyed by the lateral connections explains the phys- 
iological results as well as the psychophysics of pop-out and contour completion. Ex- 
ploiting the model's property of stochastic resonance, the visual context changes the 
model's intrinsic input variability to enhance the detection of weak signals. 

A characteristic feature of primary visual responding to oriented stimuli within re- 
cortex ( V l )  in primates is its topographic stricted regions of the visual field. A neu- 
organization into columns (1) of neurons ron's classical receptive field (CRF) is de- 

fined as that region of visual mace in which " 
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(3), for instance, has suggested that the 
plexus of horizontal connections provides 
neurons with information about the visual 
context of a stimulus. 

The meaning of visual context can be 
illustrated with two examples drawn from 
common experience. Suppose the visual 
scene consists of a large wheat field. Individ- 
ual stalks of wheat pale in importance com- 
pared to the wheat field as a whole. Only a 
feature in the scene that is "different" should 
stand out-for example, a horizontal bench 
among vertical stalks-which corresponds to 
the psychophysical effect of "pop-out." The 
effect of the visual context in this case is to 
decrease the redundancy of many nearly 
identical stimuli. In contrast, if the visual 
scene consists of a faded or smudged photo- 
graph, the visual system needs to use neigh- 
boring visual landmarks to complete incom- 
plete features, such as broken or interrupted 
lines in the photograph. The effect of visual 
context here is the enhancement of weak 
stimuli, rather than the suppression of strong 
stimuli. Both DOD-out and enhancement of 

Fig. 1. A 60 by 60 section of the 100 by 100 layer 
of cells. The preferred orientations of cells are giv- 
en by a map that was obtained by optical imaging 
methods in macaque monkey (9). The color of 
each pixel corresponds to the preferred orienta- 
tion of the respective cell (yellow, horizontal; 
green, 45"; red, 90"; and blue, 135"). Power spec- 
tral analysis of the scaled orientation map yields a 
wavelength A (repeat distance) of 20.6 lattice 
units. Superimposed in black are the connections 
made by cells within a circular patch of radius 3 at 

I 
the center. Predominantly excitatory connections 
(+); predominantly inhibiory connections (-). Fif- 
ty nonorientation-specific local connections are 

I 
made from each excitatory cell onto excitatory 
cells within a Gaussian distribution of u = 2.5 
lattice units. Twenty-five connections are made 
from each inhibitory cell onto excitatory cells with- 
in a Gaussian of u = 1.0 lattice unit. Fifty connec- 
tions are made from each excitatory cell onto inhibitory cells in a distributed ring "./z lattice units distant. 
Long-range connections are made from excitatory cells onto both inhibitory and excitatory cells; the 
centers of these connections are denoted by circles. Each excitatory cell makes 15 long-range connec- 
tions roughly equally onto excitatory and inhibitory cells between A and %A lattice units away. The 
orientation preferences of target cells are taken from a Gaussian distribution with SD u = 22.5" centered 
around the presynaptic cell's preferred orientation. 

. . 
weak signals have been studied in the psy- 
chophysical literature (4, 5). 

We now suggest that both context ef- 
fects have a neuro~hvsioloeical correlate at . , - 
the earliest stage of cortical visual process- 
ing, namely in V1. Recalling that the CRF 
represents a restricted region of visual space, 
we will denote any visual stimulus within 
the CRF of a V1 neuron as a center stimu- 
lus. Stimuli in the nonclassical receptive 
field (outside the CRF) will be referred to as 
surround stimuli. 

Modulatory influences of surround stim- 
uli on the response of a cell have been 
observed in physiological experiments in cats 
and primates. For high-contrast, well-tuned 
stimuli inside the CRF, the addition of sim- 
ilar stimuli outside the CRF leads to a sup- 
pression of the response (6, 7). On the other 
hand, when weak (subthreshold) stimuli are 
present inside the CRF, the addition of mul- 
tiple similar stimuli in the surround produces 
a weak increase in the response (6-8). 

We propose a model that explains the 
reversal of the context effect by allowing the 
net effect of the long-range lateral connec- 
tions to be stimulus dependent. Specifically, 
the effect of lateral connections on a center 
cell is excitatory when the cell receives weak 
direct input from the lateral geniculate nu- 
cleus (LGN), and it is inhibitory when it 
receives strong input. This effect is a natural 
consequence of the impact of noisy input on 
the cell's resDonse and the differential char- 
acteristics of excitatory (pyramidal) cells and 
inhibitorv neurons. 

The model is a single-layer network of 
10,000 excitatory and 10,000 inhibitory 
cells. Both excitatory and inhibitory cells 
respond to stimuli of a preferred orientation 
with individual action potentials. The net- 

work map of orientation preferences used 
was measured by optical imaging in ma- 
caque monkey (9) and scaled to the size of 
the model network. Within each orienta- 
tion hypercolumn (defined as an aggregate 
of columns spanning all orientation prefer- 
ences), excitatory cortico-cortical connec- 
tions dominate for very nearby cells ( lo),  
whereas inhibitorv connections are more 
widely spread ( I  1 ). Long-range excitatory 
connections are made onto e x c i t a t o ~  and 
inhibitory cells with similar orientation 
preferences (Fig. 1) (1 2). 

The LGN input is organized in analogy 
to stimuli used in physiological studies of 
nonclassical receptive fields. We idealize 
the center stimulus as input to cells in one 
particular orientation column. Stimulation 
of the nonclassical receptive field (the sur- 
round) is simulated by providing input to 
surrounding hypercolumns. The surround 
stimulus is oriented either parallel or or- 
thogonal to the center stimulus. The LGN 
input frequency is taken to be linearly re- 
lated to stimulus contrast. To  test how the 
modulation by the surround depends on the 
contrast of the stimulus, we vary the con- 
trast (input rate) of the center stimulus 
while keeping the contrast of the surround 
stimuli constant. Figure 2A displays the 
effect of surround stimuli on the resDonse 
rate of a typical neuron whose preferred 
orientation matches the center stimulus. 

For high center stimulus contrast, the 
cell's response is suppressed by about a fac- 
tor of 2 for orthogonal surround and by 
nearly a factor of 3 for parallel surround (6). 
The stronger suppression of cells tuned to 
the same orientation is a physiological cor- 
relate of pop-out: Given the same surround 
stimulus, the cells that code for the singular 

(orthogonal) center stimulus respond more 
strongly. 

For low center stimulus contrast, adding 
a surround stimulus of the same orientation 
increases the firing rate of the center cells. 
As shown in Fig. 2B, this increase lowers 
the perceptual threshold of detecting a 
stimulus when surrounded by parallel ele- 
ments (1 3). The time course of the response 
is shown in Fig. 2, C and D, comparing a 
model neuron to the averaged temporal re- 
sponse of real neurons. 

Our model accounts for the differing 
effect of the visual context on the re- 
sponse to weak and strong stimuli using 
physiologically plausible mechanisms. To 
analyze the mechanisms responsible for 
line completion and pop-out, we will con- 
sider separately the effect of mean net 
current and the effect of current fluctua- 
tions contributed by the surround. 

The net current from the surround con- 
tribution depends on the level of activation 
of the cells responding to the center stimulus 
( 14). Because the spontaneous background 
input to inhibitory cells in the model is lower 
than to excitatory cells, inhibitory cells will 
only be activated at higher external input 
rates. At low stimulus contrasts, the input 
from long-range lateral connections will only 
weakly increase the firing rates of inhibitory 
neurons; only long-range excitation remains, 
resulting in the line completion effect. Be- 
cause the firing rate of inhibitory neurons 
increases faster than that of excitatory neu- 
rons, as a function of input, the surround 
contribution becomes functionally inhibito- 
ry as the strength of LGN stimulation in- 
creases. The difference between nonorienta- 
tion- and orientation-specific inhibition is 
responsible for the pop-out effect. 
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Fig. 2. (A) Effect of lateral connections. The average contrast response curves of cells within the classical 
receptive field are displayed as a function of LGN input frequency (which is assumed to vary linearly with 
contrast). The central stimulus is always at the preferred orientation. The dashed curve is in the absence 
of any additional input. The dotted and solid lines were obtained by adding orthogonal and parallel 
surround sjimuli, respectively (see text). Surround input enhances the response frequency for low center 
input and suppresses it for high center input. The suppression effect is stronger for same-orientation 
surround input than for orthogonal surround. (B) The addition of parallel surround stimulation lowers the 
detection threshold of the center stimulus at low input contrasts. Three hundred trials were run under 
each stimulus condition; the variable spike count of one cell within 150 ms of stimulus onset was recorded 
for each trial. For each surround stimulus condition, the curve represents the probability, given any two 
trials, one with a center stimulus, and one without, that the trial with the central stimulus produced more 
spikes than the trial without a central stimulus. (C) Post-stimulus time histogram. A smoothed average 
temporal response of a single unit was computed over 200 trials in response to three stimulus conditions 
in an artificial (simulated) map on a smaller network: (i) input to preferred orientation within the center 
hypercolumn (that is, the observed cell) alone (top curve); (ii) simultaneous stimulation of the center at the 
preferred orientation and the surround at the same orientation (middle curve); and (iii) only surround 
stimulation (at the preferred orientation of the center); no center stimulation (bottom curve). Stimulus 
onset occurred at the 50-ms mark. This figure should be compared with the experimental results in figure 
15 of Knierim and Van Essen (6), reproduced in (D) with permission of the Journal of Neurophysiology. 

Hirsch and Gilbert (15) have shown 
that the analogous experiment of varying 
the strength of horizontal inputs produces 
similar results: Threshold microstimulation 
of the plexus of horizontal fibers results in 
excitatory postsynaptic potentials (EPSPs), 
whereas higher stimulus currents evoke di-
synaptic inhibition that can counter and 
even overwhelm the laterally evoked EPSP. 

As opposed to the common belief that 
noise is detrimental to information process­
ing, the addition of noise by the surround 
actually improves the neural sensitivity (at 
low inputs) by increasing the slope of the 
response firing rate as a function of the 
contrast. Using noise to extend the dynam­
ic range of a system is known in physics as 
stochastic resonance (16, 17). 

Even when the net mean current con­
tributed by the lateral connections is always 

inhibitory (independent of the center stim­
ulus contrast}, the fluctuations contributed 
by the surround can produce an increase in 
the firing rate for low center contrast (18). 
The differential excitatory and inhibitory 
cell responses and the response to stochastic 
input are thus jointly responsible for the 
context effect. 

The context effect mediated by lateral 
connections described here can serve as a 
powerful computational mechanism for both 
line completion and pop-out. In the context 
of psychophysics, our model predicts that 
pop-out decreases for weak stimuli. Another 
model prediction is that the perceived stim­
ulus intensity in the presence of surround 
stimuli is enhanced for low stimulus contrast 
and suppressed for high stimulus contrast; 
this was confirmed psychophysical^ (19). 
Physiological verification of these predic­

tions requires that stimulus contrast be in­
cluded as an independent variable in non-
classical receptive field studies (20). 

10. 

11. 

12. 
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,d) + w\P, where 
nonzero w9 indicates a connection between units / 
and/ (the synaptic strength is uniform for each syn­
apse type), ®{Vj- ,d) is a shorthand notation 
for whether the unity spiked in the previous millisec­
ond, and fP is the external input, which is weighted by 
w. Local, nonorientation-specific connections serve 
to implement the massive (excitatory) feedback of 
the canonical microcircuit (70). Inhibitory cells are 
modeled as receiving fewer projections from LGN 
and from cortical areas othe/ than pyramidal cells. 
Without stimulus input, they are further away from 
firing threshold than the excitatory cells, as indicated 
by their lower spontaneous firing rate. For each cell 
type, the external input f° follows a Poisson distribu­
tion and has two components. The first is the stim­
ulus-specific LGN input: Given an input orientation of 
6, this component scales as cos2[2(8 - 6j)], where 6j 
is the cell's preferred orientation. Spontaneous firing 
results from the second component off,0 that groups 
together all inputs from outside V1 and LGN. Excita­
tory cells are subject to firing rate adaptation as given 
by a simple model of the calcium-dependent potas­
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The time course of inhibitory conductances is anal­
ogous to that for excitatory conductances: TS dg/dt 
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ing that inhibition occurs also on the apical shaft of 
the dendrite, we can model the shunting of excitatory 
current phenomenologically [following L. F. Abbott, 
Physica A 185, 343 (1992)] by multiplying the exci­
tatory current by a factor proportional to exp(- Vg). 
In analogy to the psychometric curve in two-alterna­
tive forced-choice experiments (5), we measured in 
the model network the "neurometric curve" (Fig. 2B) 
on the basis of spike counts of a single cell within the 
classical receptive field to verify that the increase in 
firing results in a lower detection threshold for the 
central target. 
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An Internal Model for Sensorimotor Integration 
Daniel M. Wolpert," Zoubin Ghahramani, Michael I. Jordan 

On the basis of computational studies it has been proposed that the central nervous 
system internally simulates the dynamic behavior of the motor system in planning, control, 
and learning; the existence and use of such an internal model is still under debate. A 
sensorimotor integration task was investigated in which participants estimated the lo- 
cation of one of their hands at the end of movements made in the dark and under externally 
imposed forces. The temporal propagation of errors in this task was analyzed within the 
theoretical framework of optimal state estimation. These results provide direct support for 
the existence of an internal model. 

T h e  notion of an internal model, a system 
that mimics the behavior of a natural pro- 
cess, has emerged as an Important theoretical 
concept in motor control ( I  ). There are two 
varieties of the internal model: (i) forward 
models, which mimic the causal flow of a 
process by predicting its next state (for ex- 
ample, position and velocity) given the cur- 
rent state and the motor command: and iii) . , 

inverse models, which invert the causal flow 
by estimating the motor command that 
caused a oarticular state transition. Forward 
models have been shown to be of potential 
use for solving four fundamental problems in 
computational motor control. First, the de- 
lays in most sensorimotor loops are large, 
makine feedback control too slow for r a ~ i d  " 

movements. With the use of a forward model 
for internal feedback, the outcome of an 
action can be estimated and used before 
sensory feedback is available (2 ,  3). Second, 
a forward model is a key ingredient in a 
system that uses motor outflow (also called 
efference copy) to anticipate and cancel the 
sensory effects of movement (also called re- 
afference) (4). Third, a forward model can 
be used to transform errors between the de- 
sired and actual sensory outcome of a move- 
ment into the c o r r e s ~ o n d i n ~  errors In the - 
motor command, thereby providing appro- 
priate signals for motor learning (5). Simi- 
larly, by predkting the sensory outcome of 
the action without actually performing it, a 
forward model can be used in mental Drac- 
tice to learn to select between possible ac- 
tions (6). Finally, a forward model can be 
used for state estimation in which the mod- 
el's prediction of the next state is combined 
with a reafferent sensory correction (7). Al- 
though shown to be of theoretical use, the 
existence of an internal forward model in the 
central nervous system (CNS) is still a topic 
of debate. 
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When we move an arm in the absence of 
visual feedback, there are three basic meth- 
ods the C N S  can use to obtain an estimate 
of the current state-the position and ve- 
locity-of the hand. The system can make 
use of sensory inflow (the information 
available from proprioception), it can make 
use of integrated motor outflow (the motor 
commands sent to the arm), or it can com- 
bine these two sources of information by use 
of a forward model. T o  test between these 
possibilities, we carried out an experiment 
in which participants, after initially viewing 
one of their arms in the light, made arm 
movements in the dark. Three experimen- 
tal conditions were studied, involving the 
use of null, assistive, and resistive force 
fields. W e  assessed the participants' internal 
estimate of hand location by asking them to 
localize visually the position of their hand 
at the end of the movement (8). The  bias of 
this location estimate, plotted as a function 
of movement duration, shows a consistent 
overestimation of the distance moved (Fig. 
1). This bias shows two distinct phases as a 
function of movement duration: an initial 
increase reaching a peak 6f 0.9 cm after 1 s 
followed by a sharp transition to a region of 
gradual decline. The  variance of the esti- 
mate also shows a n  initial increase during 
the first second of movement after which it 
plateaus at  about 2 cmZ. External forces had 
distinct effects on the bias and variance 
propagation. Whereas the bias was in- 
creased by the assistive force and decreased 
by the resistive force, the variance was un- 
affected. 

These experimental results can be fully 
accounted for if we assume that the motor 
control system integrates the efferent out- 
flow and the reafferent sensory inflow. T o  
establish this conclusion, we developed an 
explicit model of the sensorimotor integra- 
tion process, which contains as special cases 
all three of the methods referred to above 
(9). This model is based on the observer 
framework (7) from engineering in which 
the state estimator (or observer) has access 
to both the inputs and outputs of the system. 
Specifically, the input to the arm is the 
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