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Replicator Neural Networks for Universal 
Optimal Source Coding 

Robert Hecht-Nielsen 

Replicator neural networks self-organize by using their inputs as desired outputs; they 
internally form a compressed representation for the input data. A theorem shows that a 
class of replicator networks can, through the minimization of mean squared reconstruc- 
tion error (for instance, by training on raw data examples), carry out optimal data com- 
pression for arbitrary data vector sources. Data manifolds, a new general model of data 
sources, are then introduced and a second theorem shows that, in a practically important 
limiting case, optimal-compression replicator networks operate by creating an essentially 
unique natural coordinate system for the manifold. 

T h e  first serious studies of replicator neural 
networks were carried out by Kohonen (1 )  
during the 1970s. Ackley, Hinton, and Sej- 
nowski (2) later considered the "encoder 
problem" for Boltzmann machines. In 1986, 
Cottrell, Munro, and Zipser (3) developed a 
replicator network version of the multilayer 
perceptron neural network (4). This report 
focuses on a three hidden layer version of 
this last architecture. In the followine. a ", 

data vector is defined as a point x = (x,, x,, 
. . . , x,)' in 93" (for example, the bright- 
nesses of pixels in an m-pixel image tile or 
m regular time samples of a sound stream). 
A source is a statistical process that supplies 
data vectors that belong to a compact mea- 
surable subset A of %", where the a priori 
probability of a data vector x being supplied 
is governed by a regular probability distri- 
bution p. ( 5 )  on 3" with p.(A) = 1 (a 
distribution defined on A). The case where 
m is large (say, m > 1000) is particularly 
interesting because manv-dimensional data 

u 

vectors allow high compression ratios. 
Although the term replicator neural net- 

work is intended to apply to all autoasso- 
ciative neural networks with compressed 
internal representations, for simplicity it 
will be used primarily in the following re- 
stricted sense. A replicator neural network 
is a multilayer perceptron with three hidden 
layers (see Fig. 1) that meets the following 
conditions [using the notation of (6)]: The 
input and output layers (layers 1 and 5)  of 
this network each have m units. The inputs 
to layer 1 (the input layer) are the compo- 
nents of the data vector x and the outputs 
of layer 5 are the components of x' (intend- 
ed to be an estimate of x). The output zk, of 
unit i of layer k (k = 2, 3, 4, and 5)  of the 
network is given by sk(Ikl), where 

Lk- I 

r lhC Sotnare nc 593: Cornersrone Co-n. San D ego 
CA 92121 -SA, an0 Deparmenr of E ecrr ca ano COT- 
puter Engineering and Institute for Neural Computation, 
University of California, San Diego, La Jolla, CA 92093, 
USA. 

w ~ , ~  is the weight of the ith unit of layer k 
that multiplies the output z ( k  - l ) j  of unit j 
( j  = 0, 1, . . . , Lk) of the previous layer, and 
Lk is the number of units on layer k. The 
output of the ith unit of layer 1 (the input 
layer) is zl, = xi and the bias output zkO = 
1.0 for k = 1, 2, 3, and 4. The activation 
functions sk are given by s,(O) = s4(0) = 
tanh(8) and ~ ~ ( 0 )  = 0. The activation func- 
tion for the middle hidden layer is given by 

This smooth stairstep activation function 
with N treadles essentially quantizes the 
vector of middle hidden layer outputs into 
M = Nn grid points. As the stairstep gain 
a -+ m the middle hidden layer activation 
function approaches a discontinuous stair- 
step with exactly N output values: 0, 11 
( N  - I ) ,  2/(N - I ) ,  . . . , ( N  - 2)/(N - I ) ,  
1 (Fig. 2). If both a + and N + m, then 
~ ~ ( 0 )  becomes the ramp activation function 
equal to 0 for 0 < 0, 0 for. 0 5 0 5 1, and 1 
for 0 > 1. 

A real-time coder with M codes for a 
data vector source is a pair of mappings a 
and p,  with a :  A C 93" -+ (1, 2, . . . , M} 
and p: (1, 2, . . . , M} + 93". The compres- 
sion mapping a maps each data vector x to 
its code a (x ) ,  an integer between 1 and M 
[the inverse image a-'(i) of each code is 
assumed to be measurable]. The decompres- 
sion mapping P(i) maps each code back to a 
data vector. The mean-squared-error distor- 
tion of this coder is 

D = j I x - ~ [ a ( x ) ~  I d p ( x ~  (3)  
A 

Such a coder is optimal if it minimizes D in 
comparison with all other M-code coders for 
the same source. Clearly, in the high-gain 
case, replicator networks can be viewed as 
real-time coders with M = Nn codes. 

Given any E > 0, it is straightforward to 
show that, for real-time coding, we can re- 
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Fig. 1. A replicator neural network architecture 
with rn inputs. 

place a probability distribution (I. for a source 
with a continuous probability density func- 
tion p with support A such that the distor- 
tion D of any real-time coder a, p for the 
source with distribution (I. and the distortion 
D' of the same coder applied to a source with 
density p satisfies ID - D' I < E. Thus, we 
need only consider sources with continuous 
probability density functions of compact 
measurable support. For such sources, real- 
time coders are equivalent to vector quantiz- 
ers with M codebook vectors (7). 

Despite more than 30 years of intense 
study, no practical method for constructing 
optimal or near-optimal vector quantizer 
coders for most real-world data vectors has 
been developed ( B ) ,  although methods for 
vectors of independent Gaussian or Lapla- 
cian random variables do exist (9). The 
basic problem of developing vector quantiz- 
ers for complicated sources is the construc- 
tion of codebook vectors that conform to 
the eeometrv of the source. A codebook u 

consisting of such a data-conformal set of 
points must be developed in some compact 
mathematically defined form to achieve 
near-optimal performance. (Codebooks con- 
sisting of lists of explicit vectors-for exam- 
ple, randomly chosen data vector examples 
or adaptively adjusted exemplars-might 
also work, but the required sizes of such 
codebooks are usually impractically large.) 
The following theorem shows that replicator 
neural networks provide a potentially prac- 
tical means for constructing data-conformal 
codebooks for complicated data sources. 

Theorem 1. Given a data vector source 
and given any E > 0 and integers N and n both 
greater than I ,  then there exists a replicator 
neural network with M = Nn codes that has a 
mean-sauared-error distortion within E of that 
of an odtimum M-code real-time coder foi that 
source. 

A replicator network that is functioning 
as an optimal coder creates one codebook 

0.6 

, 0.2 i! /- 
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t 

Fig. 2. The replicator network middle-hidden-lay- 
er unit activation function for N = 6 and a = 200. 

vector as its final o u t ~ u t  for each of the M 
combinatorial combinations of the n middle 
hidden layer unit outputs (each of which 
takes on N discrete values). In this way, we 
can manageably define a vast codebook of 
vectors that are appropriately placed within 
the data set. 

A kev auestion that arises is: Can we 
1 s 

actually create optimal-compression repli- 
cator neural networks by means of training 
and architecture adjustment solely on the 
basis of data vector examples randomly cho- 
sen in accordance with p? What is required 
is to find a replicator network with n middle 
hidden layer units (each taking on N dis- 
crete stairstep output values) that comes 
close to minimizing the mean squared re- 
construction error that can be obtained 
with members of this class of networks. In 
principle, this should be possible (JO), al- 
though considerable additional research 
will probably be required to obtain practi- 
cally useful results (see Fig. 3). 

Optimal-compression replicator networks 
operate as follows. Let +: [0,1]" + D be a 
smooth (Cm) orientation-preserving diffeo- 
morphism ( I  I )  of the unit cube [0,1In c Rn 
onto D C Rm (typically n 4 m), where D 
has a fixed smooth nonzero probability den- 
sity function u defined on it. If we define X: 
[O,l]n + 9l by X(U) det[d+(u)], then D is 
a data manifold if and only if ~ ( u )  = u[+(u)] 
for all u in [0,1]" and is an entropy manifold 
if and only if 

0% [+(u)] 
x(u) = (4) ho& (x) dx 

Given a point x on a data manifold (en- 
troDv manifold) D, the natural coordinates . , 
(entropy coordinates) of x are the Carte- 
sian coordinates of its preimage +-'(x) on 
the cube. (Natural coordinates are ex- 
plained below.) Thus, a data manifold D is 
an object that can be constructed by tak- 
ing an n-dimensional cube with uniform 
probability density, embedded in Rm, and 
smoothly elastically deforming it without 
tearing. The probability density function 
u at a point x on D is defined by how 
much the "material" of the cube is elasti- 

Fig. 3. Two panchromatic 192 pixel by 256 pixel 
test images (left) compressed and decompressed 
(right) by a partially trained replicator network. Im- 
ages are first divided into disjoint 64-pixel by 64- 
pixel tiles. The 4096 eight-bit pixel brightnesses of 
each tile make up its x vector. These x's are used 
to train or test the replicator network (the images 
shown were not used during training). The net- 
work used had rn = 4096, n = 40, N = 256, and 
L, = L, = 410 (compression ratio = 102.4:l). 
After reconstruction, the boundaries between the 
tiles were deemphasized by a smoothing opera- 
tion. This replicator network has 3,396,476 
weights. 

cally compressed or expanded in density at 
that point. An entropy manifold is essen- 
tially the same thing, except that the elas- 
tic compression at a point is proportional 
to the entropy fraction of Eq. 4. Because 
for most practical applications n/(n + 2) 
F5: 1, the distinction between data mani- 
folds and entropy manifolds can usually be 
ignored. Figure 4 illustrates that data man- 
ifolds can serve as models for real-world 
data sources (this can be shown rigorous- 
ly). Given their universality, only sources 
that are data (or entropy) manifolds will 
be considered below. 

Most current practical methods of data 
compression for many dimensional data 
vectors focus on the construction of a 
coordinate system that is somehow fitted 
to the geometry of the data source. For 
example, local spatial frequency and wave- 
let compression methods for imagery (1 2) 
express an image as a linear combination 
of image basis vectors. Principal compo- 
nents analysis, invented by Gauss 200 
years ago (1 3), is a method for construct- 
ing data source coordinate systems (the 
nonsmall principal axes of the covariance 
ellipsoid). A much studied open problem 
is to find the proper generalization of prin- 
cipal components analysis to non-Gauss- 
ian data sets. Although some interesting 
ideas have emerged [for example, the 
"principal curves" heuristic of Hastie and 
Stuetzle (14)], no general solution to this 
problem has been found. It is proposed 
that natural coordinates constitute this 
proper generalization. 

Like principal components, natural co- 
ordinates depend only on the probability 
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structure of the data set (infinitesimal vol- 
umes constructed of eaual infinitesimal nat- 
ural coordinate increments always have 
equal probability, although their geometri- 
cal volume measures can differ enormous- 
ly). However, unlike principal components 
(which are alwavs Cartesian). natural coor- , , 

dinates follow the probabilistic geometry of 
the data manifold. Further, except for an 
obvious set of transformations (orientation- 
preserving cube isometries and probability- 
preserving data manifold automorphisms), 
it can be shown that natural coordinates are 
unique. 

Theorem 2. Given an infinite sequence of 
data manifolds {Dl, D,, . . . , ED,, . . . } of 
monotonically increasing dimension n ,  and giv- 
en, for each set of values n ,  N ,  and E > 0 ,  a 
corresponding sequence {Nl, N,, . . . , N,, 
. . . } of replicator networks, each configured 
to perform (when a is set sufficiently large) to 
within E mean squared error of a corresponding 
data manifold optimal coder with M = N n  
codes, then as N ,  k, and a -+a a n d ~ - + O  the 
middle-hidden-layer outputs of N, will ap- 
proach natural coordinates for data manifold 
ED,. 

Thus, in the limit of large problems 
( n  + m), high gain ( a  + m), and large 
numbers of quantization levels ( N  + m), 
optimal replicator networks compress data 
vectors:by fepresenting them in a natural 
coordinate system fitted to the data man- 

ifold from which the data vectors are 
drawn. In effect, optimal replicator net- 
works carry out data compression by inter- 
nally expressing the data vectors of a data 
manifold in terms of natural coordinates 
for that manifold. 

The   roof of Theorem 2 ~ r o v i d e s  two 
immediate corollaries. First, for a fixed 
entropy manifold D of dimension n ,  in the 
limit of high gain (a + m) and large numbers 
of middle hidden layer output quantization 
levels ( N  + m). the middle hidden laver unit . , 
outputs of members of a sequence of ;eplica- 
tor networks that are approaching optimal 
~erformance as coders for D (that is. a se- 
quence for which E + 0) become entropy 
coordinates for input vectors. Second, a se- 
quence of replicator networks that use the 
ramp activation function in their n middle 
hidden layer units and are approaching min- 
imum mean squared reconstruction error for 
a fixed entropy manifold will also have mid- 
dle hidden laver unit outwuts that become 
entropy coordinates for D. The second cor- 
ollary suggests that real-world problems 
might be solved with the use of the ramp 
activation function with back-propagation 
(which might greatly improve the rate of 
learning),' rather than the stairstep activa- 
tion function of Theorem 2 (which makes 
leaming virtually impossible because of the 
need to back-propagate errors through a 
functional form having a derivative close to 
0 everywhere). Thus, it might be possible to 
use the training of replicator networks with 
ramp activations on raw data as a technique 
for constructing natural coordinates for prac- 
tical data sources (see Fig. 5). 

In Theorem 2 it. is presumed that the 
correct dimension n of a given data mani- 
fold is known. Unfortunately, in most situ- 
ations n is unknown, but it can be estimated 
by considering the growth of affine subspace 
dimensionality of k nearest neighbors 

Fig. 4. An illustration of how an arbitrary probabil- around each of a generous selection of 
ity distribution can be approximated by a data ..ints in a large data vector samole, ~ ~ ~ i -  , L 

manifold (even one that has nonsimply connected Lally, this func;ion of k grows at one slope, 
regions and elements of different dimensionali- 
ties). In this example the distribution is composed and then a decrease in slope occurs, which 

of three parts: a uniform annulus, a uniform Ilne, persists as k is increased further. The  k value 

and a point, each of total probability 1/3. This at this knee in the curve can be taken as 
distribution (which has to~oloaical dimension 21 a n  estimate of the local topological di- 

m " ~  

can be fitted as closely as desired by a two-di: mension (15) at that point; n can then be 
mensional data manifold. taken to be the largest of these local di- 

Fig. 5. (A) A set of 3000 polnts 
(chosen at random wlth respect to 
the data manifold's probablllty den- 
slty a) belonging to a two-dlmen- 
slonal data manlfold D In !IT3. (B) A 
natural coordlnate system for the 
data manlfold In (A) (C) An approx- 
lmate natural coordlnate system 
developed by tralnlng a repllcator 
network (m = 3, n = 2,  and L, = 

L, = 12) on randomly chosen data vectors from D, then mapplng each lntersectlon polnt of (B) through 
the network and connecting the outputs wlth stralght llnes 

mensions (Fig. 4). Getting n correct is 
probably the only way of steering between 
the Scylla of space-filling coordinates ( n  
estimate too low) and the Charybdis of 
highly elongated natural coordinate grid 
volumes ( n  estimate too high). Although 
the present results have been presented in 
the context of data compression, replica- 
tor networks-and the approximate natu- 
ral coordinate system representations they 
produce-will probably be at  least as use- 
ful for data analysis and exploitation. 
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Circadian Oscillations of Cytosolic and 
Chloroplastic Free Calcium in Plants 

Carl Hirschie Johnson," Marc R. Knight, Takao Kondo, 
Patrick Masson, John Sedbrook, Ann Haley, Anthony Trewavas 

Tobacco and Arabidopsis plants, expressing a transgene for the calcium-sensitive lu- 
minescent protein apoaequorin, revealed circadian oscillations in free cytosolic calcium 
that can be phase-shifted by light-dark signals. When apoaequorin was targeted to the 
chloroplast, circadian chloroplast calcium rhythms were likewise observed after transfer 
of the seedlings to constant darkness. Circadian oscillations in free calcium concentra- 
tions can be expected to control many calcium-dependent enzymes and processes 
accounting for circadian outputs. Regulation of calcium flux is therefore fundamental to 
the organization of circadian systems. 

T h e  circadian clock controls critical daily 
behavioral and reproductive activities in 
plants and.animals. This timing mechanism 
is an oscillator that orchestrates a variety of 
circadian outputs in processes as diverse as 
ion fluxes, behavior, and gene- expression 
(1 ). Recognition of the extraordinary diver- 
sity of calcium-regulated processes (2) has 
led to speculations that intracellular free 
calcium ([Ca2+],) acts as a component of 
the central circadian clockworks (1 ); that it 
entrains circadian clocks in plants, mol- 
luscs, and mammals (3); and that it regu- 
lates circadian outputs, including the ex- 
pression of specific genes (1,  4, 5). Tech- 
nical limitations of procedures (6) for in 
vivo [Ca2+], measurement have hindered 
direct tests of these speculations. We  have 
developed a method to monitor [Ca2+], in 
plants genetically transformed with the 
complementary DNA (cDNA) for apoae- 
quorin (7). When reconstituted to ae- 
quorin, this calcium-sensitive luminescent 
protein enables continuous noninvasive re- 
porting of [Ca2+], for many weeks in tissues, 
single cells, or whole seedlings (7,  8). 

For measurements of the cytosolic free 
calcium concentration ([Ca2+],), tobacco 
(Nicotlana plumbagznifolia) was genetically 
transformed with the cDNA for apoaequorin 
downstream of the cauliflower mosaic 
(CaMV) 35s promoter [strain MAQ 2.4, see 
(7)]. After reconstitution of aequorin with 
the luminophore coelenterazine (9), the lu- 
minescence of these seedlings (which reports 
[Ca2+],) was monitored after transfer to con- 
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tinuous light (LL), and a circadian pattern 
was observed (Fig. 1). The luminescence 
peak occurred shortly after dawn and re- 
curred at circadian intervals. This lumines- 
cence rhythm could be phase-shifted by an 
extension of the last dark interval (compare 
Fig. 1, A and B), which demonstrates that 
this rhythm is genuinely circadian. The lu- 
minescence rhythm could also be entrained 
by light-dark (LD) cycles; the two rhythms 
depicted in Fig. 1D come from separate 
groups of seedlings that were entrained to 
reversed-phase LD cycles and then were 
measured simultaneously. 

Luminescence was not detected in either 
nontransgenic wild-type seedlings incubated 
with coelenterazine (Fig. 1C) or transgenic 
seedlings that were not exposed to coelen- 
terazine (1 0). The rhythms of strain MAQ 
2.4 were measured in both white and red LL 
(Fig. 1, A to C).  In constant darkness (DD), 
the rhythm usually damped rapidly (Fig. 1, A 
and B). but in a few ex~eriments, an oscil- , , 

lation was observed in DD, albeit at a re- 
duced amplitude (Fig. ID). The greater am- 
plitude of the luminescence rhythm in LL 
may reflect the common observation that 
circadian ex~ression in ~ l a n t s  is more robust 
in LL (1 I) ,  or that the circadian pacemaker 
modulates the sensitivity of its photorecep- 
tive pathway (11), resulting in rhythmic 
phytochrome-mediated calcium flux (1 2). 

Aeauorin luminescence is s~ecif ic  for 
Ca2+ and is sensitive to free calcium in the 

Fig. 1. Luminescence of transgenic tobacco 
seedlings containing cytoplasmic aequorin (MAQ 
2.4) under various illumination regimes (9). White 
bars along the abscissas indicate white light back- 
ground (22 pE m-2 s-'), black bars indicate dark- 
ness, and gray bars indicate red light (18 pE m-' 
s-I). (A) Seedlings (two per vial) grown on a light- 
dark cycle of 16 hours light, 8 hours dark (LD 
16:8); the last light cycle is shown. (B) Same as in 
(A), except that the final dark period was extended 
by 12 hours, resulting in a delay of the subsequent 
rhythm. (C) Open circles, transgenic MAQ 2.4 
seedlings; closed circles, nontransgenic wild-type 
tobacco seedlings. Both groups were treated with 
coelenterazine (two seedlings per vial, grown on 
LD 16:8). (D) Separate cultures of MAQ 2.4 grown 
on reversed LD 16:8 cycles (1 0 seedlings per vial). 
The last light cycle for each is shown. The upper 
bar is for the open-circle trace, and the lower bar 
is for the closed-circle trace. Seedlings were ini- 
tially in LL, then transferred to DD at hour 120. 

SCIENCE VOL. 269 29 SEPTEMBER 1995 1863 




