
here include direct quantitative imaging 
of cyclic displacements as small as 100 nm, 
a freely oriented field of view unencum- 
bered bv the "acoustic window" reauired 
for ultrasound-based techniques, and the 
ability to study strain-wave propagation in 
a dynamic fashion. The  flexibility of NMR 
methodology allows the motion-sensitiz- 
ing gradient to  be placed along any axis, so 
that with multiple acquisitions it is, in 
principle, feasible to estimate all compo- 
nents of the strain dvadic. 

Two general fields of application for this 
technique are anticipated. The first is the 
study and visualization of strain-wave prop- 
agation within objects or materials that can 
be imaged with MRI. In principle, the meth- 
od can depict the spatial patterns of wave 
propagation characteristics such as diver- 
gence, scatter, attenuation, interference, dif- 
fraction, and dispersion. If at least one full 
cycle of mechanical excitation is applied 
within the TE interval of the NMR se- 
quence, then the practical low frequency 
limit is -10 Hz. The upper frequency limit is 
determined by the maximum slew rate of the 
gradient system of the imager and is in the 
range of 1 to 2 kHz if the motion-sensitizing 
gradient oscillates at the same frequency as 
the mechanical excitation. Our ex~eriments 
have shown that we can image mechanical- 
excitation ,wave forms ranging from contin- 
uous waves to re~eated short wave trains or 
even single cycles of mechanical excitation 
repeated each TR cycle. 

A second general area of application is 
to apply mechanical strain wave excitation 
to interrogate the properties of materials 
within a heterogeneous object. Elastic mod- 
uli are of special interest in the context of 
medical applications. For centuries, physi- 
cians have used palpation of the body to 
detect the Dresence of tumors and other 
diseases. Unfortunately, many structures of 
the body are not accessible to the palpating 
hand. It is not unusual at the time of ab- 
dominal laparotomy for surgeons to discov- 
er tumors by direct palpation of abdominal 
organs that have gone undetected in prlor 
imaging by computed tomography, ultra- 
sound, or conventional MRI. In addition to 
potentially providing a noninvasive "palpa- 
tion" technique that extends the reach and 
resolution of the diagnostic method, MRE 
offers the possibility of providing other 
measurable viscoelastic Darameters such as 
attenuation and dispersion as criteria for 
further tissue characterization. We specu- 
late that MRE may have a role in the 
detection of tumors of the breast, liver, 
kidney, and prostate. 
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Anisotropy and Spiral Organizing Centers in 
Patterned Excitable Media 

Oliver Steinbock, Petteri Kettunen, Kenneth Showalter* 

Chemical wave behavior in a patterned Belousov-Zhabotinsky system prepared by print- 
ing the catalyst of the reaction on membranes with an ink jet printer is described. Cellular 
inhomogeneities give rise to global anisotropy in wave propagation, with specific local 
patterns resulting in hexagonal, diamond, and pentagonal geometries. Spiral wave sourc- 
es appear spontaneously and serve as organizing centers of the surrounding wave 
activity. The experimental methodology offers flexibility for studies of excitable media with 
made-to-order spatial inhomogeneities. 

Propagating waves are observed in living 
organisms and biological tissues (1) as well 
as excitable chemical systems (2). The fa- 
miliar rotating spiral waves and expanding 
target patterns of the Belousov-Zhabotinsky 
(BZ) reaction (3) are also observed in thin 
slices of heart tissue (4), in the cytoplasm of 
frog oocytes (5), and in animal retinas (6). 
Three-dimensional scroll waves, extensive- 
ly studied in the BZ reaction ( 7 ) ,  have now 
been characterized in migrating slugs of the 
slime mold Dictvostelium discoideum 18)- and . , .  
it is likely that these waves are precursors to 
ventricular fibrillation in mammals (9). 
The cellular nature of living systems, how- 
ever, gives rise to inhomogeneities and an- 
isotropy not present in homogeneous reac- 
tion systems, and these may play an impor- 
tant role in the behavior of biological meA 
dia. A crucial e x a m ~ l e  is found in the 
anisotropy of mammalian heart muscle 

Department of Chemistry, West Virginia University, Mor- 
qantown, WV 26506-6045, USA. 

*To whom corresoondence should be addressed 

(10). The cellular structure of cardiac tissue 
not only causes local variations in wave 
velocity (4) but also gives rise to propaga- 
tion failure (1 1) .  In this report, we describe 
wave behavior in excitable media with 
well-defined cellular inhomogeneities ob- 
tained by printing catalyst patterns on a 
BZ-membrane system. Our experimental 
and numerical investigations show that lo- 
cal patterns determine the global wave ge- 
ometry and give rise to spontaneous orga- 
nizing centers. 

Noszticzius and co-workers (1 2) have re- 
cently demonstrated that bathoferroin, a 
catalyst and indicator for the BZ reaction 
(13), is effectively immobilized on polysul- 
phone membranes. Our experimental meth- 
od is based on the precision loading of this 
catalyst onto the membranes with an ink jet 
printer (14). Patterns were generated as 
black and white images by a commercial 
graphics program, which were then printed 
with the catalyst solution on the polysul- 

membranes. Following Noszticzius 
(1 2),  the ready-to-use membranes we.re 
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placed on agarose gels containing BZ solu- 
tion (1 5), which provided a continuous sup- 
ply of reactants to the catalyst-loaded re- 
gions without hydrodynamic disturbances 
of the wave activity. The wave behavior 
was monitored by measuring the reflected 

Fig. 1. Propagating waves on BZ membranes with 
cellular inhomogeneities. Catalyst pattems appear 
as the background in each figure; unloaded and 
loaded regions are light and dark gray, respective- 
ly: (A) Triangular cells of side length 1.65 mm; (B) 
superimposed linear and circular grids (-1 vertical 
line per millimeter; the radius of vertically shifted 
circle segments is -4 cm); (C) superimposed cir- 
cular grids (radius of circle segments is -2.1 cm 
with a horizontal and vertical shift of -1 curve/ 
mm). The specific catalyst pattems gave rise to (A) 
hexagonal, (B) diamond-shaped, and (C) pentag- 
onal wave pattems. Image areas are (A) 14.5 cm2, 
(B) 13.5 cm2, and (C) 8.4 cm2. Line thickness in (B) 
and (C) was 0.33 mm. The positions of the waves, 
obtained by subtraction of successive video 
frames, were superimposed on the background 
image, with white assigned to the wave front and 
black assigned to the wave back. Spiral waves in 
(A) and (B) occurred spontaneously, whereas the 
wave in (C) was initiated by contacting the mem- 
brane with a silver wire. 

light (wavelength A = 500 nm) from the 
medium with a charge-coupled device 
(CCD) video camera. 

Wave propagation was studied on various 
catalyst-loaded membranes, each printed 
with a different pattern. A checkerboard 
arrangement of triangular cells gave rise to 
hexagonal wave geometry (Fig. 1A). Simi- 
larly, diamond-shaped wave structures de- 
veloped on cross-hatched linear grids, and 
deformations of higher complexity occurred 
on less symmetrical patterns. A nonlinear 
catalyst grid of superimposed parallel lines 
and vertically shifted circle segments (Fig. 
1B) gave rise to a distorted diamond geom- 
etry with the left corner following a specific 
arc. Video frame sequences demonstrated 
that the spiral tips in Fig. 1, A and B, rotated 
around  articular catalvst-free cells on the 
membrane, effectively pinning the spiral 
waves. A similar pinning of spiral waves in 
heart tissue to anatomical discontinuities 
such as small arteries has been reported (4). 

Wave patterns with approximately five- 
fold symmetry may occur in catalyst grids 
consisting of superimposed arrays of shifted 
circular arcs (Fig. 1C). The pentagonal 
s h a ~ e  has four ~rominent corners that co- 
incide with two catalyst-loaded arcs. The 
intersection of these arcs is close to the 
point of wave initiation. The fifth, some- 
what smoother comer is directed along the 
unique symmetry axis of the catalyst pattern 
(toward the upper right). 

We carried out numerical simulations of 
the wave behavior using the Tyson-Fife 
model (1 6, 17) of the BZ reaction, modified 
to reflect the features of the patterned me- 
dium. The model has the form 

where the variables u and w describe the 
scaled concentrations of the propagator spe- 
cies HBr02 and the controller species 
bathoferriin, respectively. Catalyst-free re- 
gions on the membrane were modeled bv - 
omitting the equation for w and all terms in 
f(u, w) that involve the catalyst (17). This 
allows the propagator species u to penetrate 
catalyst-free regions even though these ar- 
eas do not support active wave propagation. 

While the experimental measurements 
yield information about the wave propaga- 
tion based on the bathoferriin concentra- 
tion. the numerical simulations can ~rovide 
insights in terms of the autocatalytic species 
HBr02. A grid of triangular cells (Fig. 2A) 
gives rise to a hexagonal wave pattern much 
like the experimentally measured waves 
(Fig. 1A). As in the experiment, the rotat- 
ing spiral tips are pinned to specific cata- 
lyst-free cells. The pentagonal wave arising 
from a grid of superimposed arrays of shifted 
circular arcs (Fig. 2B) is also in good agree- 
ment with the corresponding experimental 
wave pattern (Fig. 1C). Elevated levels of u 
appear in catalyst-free cells behind the 
waves in both simulations (Fig. 2). These 
islands of autocatalyst are not able to ini- 
tiate additional waves, however, because 
they are surrounded by catalyst-loaded cells 
in the refractory state (18). It is possible 
that such regions of elevated u are relevant 
to the appearance of "echo waves" in the 
trailing edge of a wave, a phenomenon ob- 
served in heart tissue (19). 

The wave patterns in Figs. 1 and 2 can be 
understood in terms of a simple geometric 
mechanism. Assuming the catalyst-free cells 
to be impenetrable obstacles, the geometries 

Fig. 2. Two-dimensional simulations of wave patterns. Black and gray areas indicate catalyst-loaded and 
catalyst-free regions, respectively. Superimposed white curves represent contour lines of the variable u 
at a given time. (A) Spiral pair forming hexagonal pattern (contour line at half-maximum of the propagator 
variable, umJ2); (B) wave with pentagonal deformation (contour lines at umJ3 and 2u,,/3). Equations 
were integrated on a grid of 300 x 300 points (grid spacing Ax = 1/3; time step At = 0.001) with f = 

2.5 for excitable kinetics (1 7). 
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can be deduced by determining paths along 
the catalyst-loaded cells of equal distance 
from the wave origin. Waves propagating 
along continuous lines of the catalyst grid 
therefore form comers of the pattern, and 
the most circuitous routes form the least 
advanced edges. In addition, the diffusion of 
HBrOz into the catalyst-free cells and its 
flux into neighboring catalyst-loaded cells 
provide a mechanism for wave transmission 
across the barriers. In experiments with cat- 
alyst-loaded squares separated by catalyst- 
free strips, continuous wave patterns formed 
across the array despite the unexcitable bar- 
riers (20). The extent of wave transmission 
across the catalyst-free regions depended on 
excitability and barrier width, with the cor- 
responding wave geometries ranging from 
sharply polygonal to the familiar circles and 
spirals of homogeneous media. 

Experiments were carried out to exam- 
ine wave behavior in media containing ran- 
dom heterogeneities (Fig. 3A). Patterns 
were printed with a catalyst dot density 
linearly increasing from 0.1 to 1.0. The dot 

Fig. 3. Chemical waves on a linear dot density 
gradient with random dot locations perpendicular 
to the gradient. (A) Wave behavior on catalyst- 
loaded membrane; wave positions (white) ob- 
tained by image subtraction (At = 6 s). The density 
of catalyst-loaded dots vanes from 0.1 (left) to 1 .O 
(right); field of view, 9.7 cm2. (B and C) Numerical 
simulations of wave behavior: two successive im- 
ages with At = 2. Wave patterns, indicated by 
white contour lines of the variable u (as in Fig. 2B), 
evolved slowly from uniform initial conditions. Dot 
density varies linearly from 0.1 (left) to 0.9 (right). 
Parameters of simulation: 600 x 150 grid points, 
grid spacing Ax = 1/3, time step At = 0.001, and 
f = 1.25 for oscillatory kinetics (1 7). 

density was equally incremented each print- 
ed line for 300 lines, with the dots in each 
line placed according to a random number 
generator. The random heterogeneities 
were on a much finer scale than the pat- 
terns described above because they occurred 
dot-wise. close to the resolution of the 
printer. On the left side of the membrane 
(Fig. 3A), the dot density is insufficient to 
support wave activity. Irregular waves are 
exhibited between a density of about 0.3 
and 0.5, below which only fleeting spots of 
excitation are found. The waves become 
regular at a dot density greater than about 
0.6. Qualitatively similar behavior was 
found with reactant solutions of lower ex- 
citability (containing a lower sulfuric acid 
concentration), where the transition from 
irregular to regular behavior occurred at 
higher dot density. The wave segments in 
regions of intermediate dot density tended 
to serve as high-frequency sources, eventu- 
ally entraining the behavior in the higher 
density regions. This entrainment resulted 
in overall wave propagation from regions of 
low dot density to high dot density (from 
left to right in Fig. 3). 

Figure 3, B and C, shows successive im- 
ages of the simulated behavior, with regions 
of elevated u within the contour curves 
(21). At very low dot density, regions of 
excitation appear but are ineffective in ini- 
tiating waves. At an intermediate dot den- 
sity between 0.3 and 0.4, larger regions of 
excitation form broken wave segments that 
serve as wave sources as they undergo spiral- 
like rotation. Waves also emanate from 
symmetrical pacemakers in this region. The 
waves become regular as they move into 
regions of higher dot density. While the 
intermediate level heterogeneity gives rise 
to organizing wave centers, the waves in 
regions of higher dot density are remarkably 
unaffected by the heterogeneity. 

Spiral waves do not occur spontaneously 
in homogeneous media. In homogeneous 
BZ systems, they form at either physically or 
chemicallv induced wave breaks (1 .  3 ). . ,  , 

Special initial conditions, such as cross- 
field stimulation (4. 22) or wave initiation . .  . 
in the vulnerable region of a preceding 
wave (23) can also give rise to spiral waves. 
In biological excitable media, however, spi- 
ral waves appear spontaneously without 
s~ecial  initial conditions or induced wave 
breaks. The most common explanation for 
their occurrence involves the heterogeneity 
in refractoriness of the medium (24), al- 
though it is now known that impenetrable 
obstacles may also lead to spiral wave for- 
mation (25). 

Spiral waves and rotating wave segments 
also arise in heterogeneous systems from the 
interaction of cells or clusters of cells with 
different oscillatory frequencies. The exper- 
iment and simulation shown in Fig. 3 uti- 

lized oscillatory media, initially homoge- 
neous throughout the system. Each catalyst 
pattern exhibited bulk oscillations, with 
spurious wave initiations occurring at high- 
er frequency sites, which were located in 
the smaller catalyst regions and at the cat- 
alyst boundaries. The resulting loss of syn- 
chronization gave rise to the rotating wave 
sources shown in the ex~erimental and cal- 
culated images (26). Several mechanisms 
could give rise to spiral waves in such asyn- 
chronous oscillatory media, for example, 
wave initiation in the vulnerable region of a 
precursor wave. The spiral waves in Fig. 1, 
A and B, also appeared spontaneously, and 
such spiral organizing centers were common 
in all the patterned media. Spiral centers 
form spontaneously in other cellular media, 
including the slime mold D. discotdeum (8) 
and a catalyst-bead BZ system (27). 

Polygonal wave patterns have also been 
observed in the reaction of NO + Hz on 
Rh(1 lo), where state-dependent diffusion 
anisotropy gives rise to wave deformations 
(28). Elli~tical waves are observed in heart . . 
tissue as a result of different propagation 
velocities along the long axis of the cells 
and in the transverse direction (4). The 
printed BZ-membrane system, with well- 
defined and easily varied catalyst patterns, 
offers a convenient and versatile system for 
the studv of anisotro~v and cellular inho- 

L ,  

mogeneities in excitable media. Our study 
has shown that inhomogeneities on small 
length scales strongly influence global wave 
behavior, giving rise to patterns with pro- 
nounced anisotropy as well as spontaneous 
spiral wave sources. Such effects are un- 
doubtedlv Dresent in the cellular media of , L 

excitable biological systems. 
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Replicator Neural Networks for Universal 
Optimal Source Coding 

Robert Hecht-Nielsen 

Replicator neural networks self-organize by using their inputs as desired outputs; they 
internally form a compressed representation for the input data. A theorem shows that a 
class of replicator networks can, through the minimization of mean squared reconstruc- 
tion error (for instance, by training on raw data examples), carry out optimal data com- 
pression for arbitrary data vector sources. Data manifolds, a new general model of data 
sources, are then introduced and a second theorem shows that, in a practically important 
limiting case, optimal-compression replicator networks operate by creating an essentially 
unique natural coordinate system for the manifold. 

T h e  first serious studies of replicator neural 
networks were carried out by Kohonen (1 )  
during the 1970s. Ackley, Hinton, and Sej- 
nowski (2) later considered the "encoder 
problem" for Boltzmann machines. In 1986, 
Cottrell, Munro, and Zipser (3) developed a 
replicator network version of the multilayer 
perceptron neural network (4). This report 
focuses on a three hidden layer version of 
this last architecture. In the followine. a ", 

data vector is defined as a point x = (x,, x,, 
. . . , x,)' in 93" (for example, the bright- 
nesses of pixels in an m-pixel image tile or 
m regular time samples of a sound stream). 
A source is a statistical process that supplies 
data vectors that belong to a compact mea- 
surable subset A of %", where the a priori 
probability of a data vector x being supplied 
is governed by a regular probability distri- 
bution p. ( 5 )  on 3" with p.(A) = 1 (a 
distribution defined on A). The case where 
m is large (say, m > 1000) is particularly 
interesting because manv-dimensional data 

u 

vectors allow high compression ratios. 
Although the term replicator neural net- 

work is intended to apply to all autoasso- 
ciative neural networks with compressed 
internal representations, for simplicity it 
will be used primarily in the following re- 
stricted sense. A replicator neural network 
is a multilayer perceptron with three hidden 
layers (see Fig. 1) that meets the following 
conditions [using the notation of (6)]: The 
input and output layers (layers 1 and 5)  of 
this network each have m units. The inputs 
to layer 1 (the input layer) are the compo- 
nents of the data vector x and the outputs 
of layer 5 are the components of x' (intend- 
ed to be an estimate of x). The output zk, of 
unit i of layer k (k = 2, 3, 4, and 5)  of the 
network is given by sk(Ikl), where 

Lk- I 

r lhC Sotnare nc 593: Cornersrone Co-n. San D ego 
CA 92121 -SA, an0 Deparmenr of E ecrr ca ano COT- 
puter Engineering and Institute for Neural Computation, 
University of California, San Diego, La Jolla, CA 92093, 
USA. 

w ~ , ~  is the weight of the ith unit of layer k 
that multiplies the output z ( k  - l ) j  of unit j 
( j  = 0, 1, . . . , Lk) of the previous layer, and 
Lk is the number of units on layer k. The 
output of the ith unit of layer 1 (the input 
layer) is zl, = xi and the bias output zkO = 
1.0 for k = 1, 2, 3, and 4. The activation 
functions sk are given by s,(O) = s4(0) = 
tanh(8) and ~ ~ ( 0 )  = 0. The activation func- 
tion for the middle hidden layer is given by 

This smooth stairstep activation function 
with N treadles essentially quantizes the 
vector of middle hidden layer outputs into 
M = Nn grid points. As the stairstep gain 
a -+ m the middle hidden layer activation 
function approaches a discontinuous stair- 
step with exactly N output values: 0, 11 
( N  - I ) ,  2/(N - I ) ,  . . . , ( N  - 2)/(N - I ) ,  
1 (Fig. 2). If both a + and N + m, then 
~ ~ ( 0 )  becomes the ramp activation function 
equal to 0 for 0 < 0, 0 for. 0 5 0 5 1, and 1 
for 0 > 1. 

A real-time coder with M codes for a 
data vector source is a pair of mappings a 
and p,  with a :  A C 93" -+ (1, 2, . . . , M} 
and p: (1, 2, . . . , M} + 93". The compres- 
sion mapping a maps each data vector x to 
its code a (x ) ,  an integer between 1 and M 
[the inverse image a-'(i) of each code is 
assumed to be measurable]. The decompres- 
sion mapping P(i) maps each code back to a 
data vector. The mean-squared-error distor- 
tion of this coder is 

D = j I x - ~ [ a ( x ) ~  I d p ( x ~  (3)  
A 

Such a coder is optimal if it minimizes D in 
comparison with all other M-code coders for 
the same source. Clearly, in the high-gain 
case, replicator networks can be viewed as 
real-time coders with M = Nn codes. 

Given any E > 0, it is straightforward to 
show that, for real-time coding, we can re- 
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