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Domain Interaction Between NMDA 
Receptor Subunits and the Postsynaptic 

Density Prstein PSD-95 
Hans-Christian Kornau, Leslie T. Schenker, Mary B. Kennedy, 

Peter H. Seeburg* 

The N-methyl-D-aspartate (NMDA) receptor subserves synaptic glutamate-induced trans- 
mission and plasticity in central neurons. The yeast two-hybrid system was used to show 
that the cytoplasmic tails of NMDA receptor subunits interact with a prominent postsyn- 
aptic density protein PSD-95. The second PDZ domain in PSD-95 binds to the seven- 
amino acid, COOH-terminal domain containing the terminal tSXV motif (where S is serine, 
X is any amino acid, and V is valine) common to NR2 subunits and certain NRI splice 
forms. Transcripts encoding PSD-95 are expressed in a pattern similar to that of NMDA 
receptors, and the NR2B subunit co-localizes with PSD-95 in cultured rat hippocampal 
neurons. The interaction of these proteins may affect the plasticity of excitatory synapses. 

pr~)pertles that in~licate they l ~ a v c  a central 
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feature of the NR7 su l~~ i l~ l t a  is their extend- 
ed, intracell~llar COOH-terminal sequence 
distal to the last tranamcmhrane r e c ~ c ~ n  (51, 
u.hic11 may anchor the receptors o r  aiiemble 
a signal-transiiuci~le cc~mples for the volt- 
age-Llepel~dent Ca'+ entry thrL)ugh the clw 
tamate-activate1 1011 channel (6 ) .  Thus, wc 
set out to ~ d c n t i h  ~ntracellular lir~)telns that 
hll~il  to the NR7 S L I ~ ~ I I I L ~ . ;  at iynapses. 
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L ~ C J I I I , I I ~  (amink> A C I L ~ S  1 to 147) tll\c~l to the 
entire COOH-te rm~na l  ilL)main ( 677 ~ ~ I I I L )  



acids) of NRZA (8) was expressed from a 
shuttle vector introduced into yeast strain 
YPBZ (9). This strain was transformed with a 
rat brain complementary DNA (cDNA) ex- 
pression library (1 0) constructed in plasmid 
pGAD (9) to produce proteins tagged on the 
NH,-terminus with the GAL4 activation 
domain. Library clones activating the ex- 
pression of both the selection marker HIS3 
and the Lac2 reporter gene were sequenced. 
Our screen identified a plasmid (pGAD- 
PSD) with nearly the entire coding region 
(10) for the prominent postsynaptic density 
protein PSD-95 (1 1 , 12). 

To  determine whether other NRZ sub- 
units also interact with PSD-95, we con- 
structed baits consisting of COOH-terminal 
NR2 sequences tagged with the C A M  
DNA binding domain. These were tested 
for reporter gene activation after cotrans- 
fection of yeast with pGAD-PSD. We 
found that COOH-terminal sequences of 
NRZB (Fig. 1A) and NRZD (8) also inter- 
acted with PSD-95. Dissection of the 
COOH-terminal NRZB sequences (Fig. 
1A) revealed that activation of reporter 
genes depended on the presence of the sev- 
en amino acids at the COOH-terminus. 
Indeed, a bait constructed from synthetic 
DNA encoding only the COOH-terminal 
seven residues (8) showed activity, identi- 
fying these residues as those that mediate 
the interaction of NRZB with PSD-95. 
These residues are conserved (Fig. 1A) in 
the otherwise divergent cytoplasmic tails of 
the NRZ subunits (4). A similar sequence 
(PSVSTVV) (13) occurs at the COOH- 
termini of NR1 splice forms NR1-3 and 
NR1-4 (14), which also interacted with 
PSD-95. Thus, it appears that the COOH- 
terminal domains, characterized by a se- 
quence that we termed the tSXV motif 
(1 5 ) ,  confer on NMDA receptors the ability 
to interact with PSD-95. 

PSD-95 (1 1 ) is a multidomain protein 
with three PDZ repeats (1 6), a Src homology 
(SH3) domain, and a 190-amino acid se- 
quence having homology to yeast guanylate 
kinase. To identify which part of PSD-95 
interacts with the tSXV domain, we con- 
structed a library of fusion proteins of the 
GAL4 activation domain with -500-bp 
DNA fragments randomly generated by son- 
ication of pGAD-PSD (17). This tagged 
fragment library was transfected into yeast 
together with a vector encoding the tSXV 
sequence of NRZB appended to the GAL4 
DNA binding domain, and yeast colonies 
were selected by histidine starvation. DNA 
from nine selected colonies was amplified by 
the polymerase chain reaction (PCR) with 
plasmid-specific primers, and the amplified 
DNAs were sequenced. All sequences shared 
the entire PDZZ coding region (Fig. lB), 
which indicates selectivity of the NRZB 
tSXV motif for PDZZ as well as a require- 
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Fig. 1. Interaction of NMDA recep- A ~ 1 - 3  ~4 
1-a 

tor NR2 subunits (4) and PSD-95 NHPr m- COOH 

(16). (A) The NR2 subunits contain a - 
/ - - - /_- 

I 
conserved COOH-terminal se- NWB - _-- I Activity 

quence that binds to PSD-95. A 839-1242 C- 
/ 

I 1 .  
P 1 .  

map of NR2 subunits includes the igEig Y 1 .  
I 

sianal seauence (shaded) and re- 1310-147s -I . 
gi&s of r;lembra"e inseiion (filled ~~~~~~ 
boxes, MI  -4). The COOH-terminal y~;:; 
regions in NR2A-D differ in se- 14,,,,2 

quence and length, as denoted by , - , 1 

the single line. Shown below are NRZA . . . . . . i : I E i ' r ' P  
- - T v - - . > .  NRZB . . . . .. , J 

segments of the COOH-terminal re- NRZC . . . 
-.-,4E.yC. 
,- - . - - -. . . NR2D . . . . . . .. . -- ,r, 

gion of NR2B appended to the W 
GAL4 DNA binding domain (8), tsxv 
specified by amino acid (aa) num- B 
bers on the left with the methionine PDL~ r u u  PDZ3 SH3 GuK 

of the immature polypeptide as the NH2[=II , .. ; . . . . . .:.. I COOH 

first residue. The ability of these fu- 71-257 + I 100 aa 

sion proteins to activate the selec- i:g 7 -I 

tion marker HIS3 and the reporter g9-272 - 
+ 

gene LacZ upon cotransfection + 
with pGAD-PSD in yeast is listed on 141-295 - - 
the right. Low levels of activity that - 
could not be traced to a particular 
sequence are indicated by (+). Strong activation required the COOH-terminal seven amino acids con- 
taining the tSXV motif (15), which are shown for NR2A-D in the single-letter code (13), with the asterisk 
denoting the stop codon. (B) The tSXV domain of NR2B interacts with the second PDZ domain in 
PSD-95. The map of PSD-95 specifies the three PDZ domains, an SH3 domain, and the guanylate kinase 
region (GuK). Randomly generated PSD-95 sequences interacting in the yeast two-hybrid system with 
the COOH-terminal tSXV sequence of NR2B (1 7) are aligned to the domain map and identified by amino 
acid numbers. All selected clones shared the PDZ2 coding sequence (shaded). 

Fig. 2. In vitro and cellular binding A 8s B 8b99 9 c 
of NR2B COOH-terminal se- 8 8 8 8  

$%& - $ $ $ Q  \ %  $ 2  
quences to PSD-95. (A) GST fu- $, ,9,9$-,9 2 5 $$'& +* 4' sion proteins (18), resolved by ,$$$$$$ 6 6 3  
SDS-polyacrylamide gel electro- 84- 
phoresis and stained with Coo- 53- -1 16- - 
massie blue. Molecular size mark- 35- - - - -. -87- 

ers are indicated on the left in kilo- 29- -67- 
daltons. DNAs encoding the 20- -55- 
COOH-terminal 49 and 9 amino 
acids of NR2B were inserted into - + -  + 
pGM-2T (Pharmacia) in-frame tSXV-peptide 
with the GST moiety. The fusion 
proteins expressed in Escherichia coli DH5a after induction by isopropyl-p-D-thiogalactopyranoside were 
purified on glutathione-Sepharose beads (18). (B) lmmunoblots (20) of PSD-95 recovered by interaction 
with GST, GST-NR2B49, and GST-NR2B9 bound to glutathione-Sepharose beads from cytoplasmic 
extracts of HEK 293 cells expressing PSD-95 (19) (extract 1). The first lane contains 1/20 of the amount 
of extract 1 used in affinity precipitations. Where indicated, a 100-fold excess of a tSXV motif containing 
peptide was present during incubation. (C) Co-immunoprecipitation of the COOH tail of NR2B and 
PSD-95 from co-transfected HEK 293 cells (21). Shown are immunoblots (20) detecting PSD-95 in NR2B 
immunoprecipitates (IP) of extract 1 (containing only PSD-95) and extract 2 (containing recombinantly 
expressed PSD-95 and a 397-residue NR2B COOH-terminal sequence). Equal amounts of extracts were 
analyzed in parallel to confirm the similar concentrations of PSD-95 (extract 1 and extract 2). Molecular 
size markers (in kilodaltons) are shown for both (B) and (C). 

ment for the complete PDZ domain. This 
selectivity was maintained when the three 
PDZ domains were expressed separately (1 7). 
Furthermore, the NRZB tSXV motif failed to 
bind to the single PDZ domain of neuronal 
nitric oxide synthase (1 1 ). Selective interac- 
tion with PDZZ was also obsewed for the 
tSXV domains of NRZA, NRZC/D, and 
NR1-314 (8), which indicates that all 
NMDA receptor subtypes (4) can bind PSD- 
95 by means of PDZZ in spite of the se- 
quence variation in their tSXV motifs. 
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We sought independent evidence for the 
interaction of NRZB COOH-terminal se- 
quences with PSD-95. Fusion proteins of 
glutathione-S-transferase (GST) coupled 
with the COOH-terminal 49 residues or 9 
NRZB residues were bound to glutathione- 
coupled Sepharose beads ( 18) (Fig. ZA) and 
were incubated with HEK 293 cell extracts 
containing full-length recombinant PSD-95 
(19). Protein bound to the GST-NRZB fu- 
sion proteins was resolved on SDS-poly- 
acrylamide gels and probed with a mono- 



Fig. 3. Co-localization of PSD-95 and NMDA 
receptor subunits in hippocampal cultures and 
co-expression of PSD-95 and NMDA receptor 
subunits in the brain. (A) Double image of a hip- 
pocampal neuron fluorescently labeled (23) with 
antibodies against both NR2B (green channel) 
and PSD-95 (red channel). Yellow indicates 
overlapping fluorescence. Pixels darker than 
82% K (where K designates black in the CYMK 
color system) were changed to white to improve 
contrast. Bar equals 10 pm. (B and C) Enlarged 
single images of the labeling patterns of antibody 
to PSD-95 (B) and antibody to NR2B (C) from the 
boxed region in (A). Note the close registration of 
brightly labeled spots along dendrites. Bar 
equals 5 Fm. (D and E) In situ hybridization (24) 
in horizontal sections of rat brain (P30) for tran- 
scripts encoding PSD-95 (D) and NU1 (E), the 
principal subunit present in all native NMDA re- 
ceptor channels (3, 4). OB, olfactory bulb; Cx, 
cortex; Hi, hippocampus; Cb, cerebellum. 

clonal antibody to PSD-95 (20). Both 
GST-NRZB fusion proteins bound PSD-95 
to the same extent, whereas no PSD-95 was 
recovered by GST alone (Fig. 2B). Further- 
more, the presence of a synthetic peptide 
containing the tSXV domain of NRZB pre- 
vented PSD-95 binding to the GST-NRZB 
fusion proteins (Fig. 2B), whereas no inter- 
ference was observed with a control peptide 
(19). We also found that the NR2B-PSD- 
95 complex could be immunoprecipitated 

Table 1. Different receptor and channel proteins carry a tSW motif (13). Entries were retrieved from the 
SwissProt R30 database by a search with Inherit Analysis (Perkin-Elmer) and S/TXV* (15) as a query. 

Protein Accession no. tSW sequence 

Glutamate receptors 
NMDAR2B (rat) Q00960 SSIESDV 
NMDAR1-3/4 (rat) P35439 PSVSTVV 
GluR (Lymnaea) P26591 SNTHTEV 

K+ channels 
Shaker AIB (Drosophila) PO851 0/11 VSIETDV 
RCKl (rat)' PI 0499 SKLLTDV 

Na+ channels 
a subunit, electric organ (eel) PO271 9 VVRES IV 
a subunit, cardiac muscle (rat) PI 5389 RDRESIV 
a subunit, skeletal muscle (rat) P1 5390 GVKESLV 

G protein-coupled receptors 
p, adrenoreceptor (rat) P1 8090 FSSESKV 
Serotonin receptor 2A (rat) P1 4842 NEKVSCV 
Serotonin receptor 2C (rat) PO8909 SERISSV 
VIP receptor (rat) P30083 QAEVSLV 
CRF receptor (rat) P35353 IKQSTAV 
Mas (rat) PI 2526 VS IETVV 

Other receptors 
Toll (Drosophila) PO8953 NAKQSDV 
Fas (human) P25445 NEIQSLV 
NGF receptor, p75 (rat) PO71 74 STATSPV 
Fasciclin I I  (Drosophila) P34082 IGKNSAV 
NR-CAM (chicken) P35331 NAMNS FV 
V-CAM (rat) P29534 EAQKSKV 

'RCK2 to 5 also carry tSXV sequences. 

from extracts of HEK 293 cells cotrans- 
fected with expression vectors for PSD-95 
and the COOH-terminal region of NRZB 
(21), which indicates formation of the bi- 
nary complex in a cellular environment 
(Fig. 2C). 

Both the NMDA receptor NRZB sub- 
unit and PSD-95 are highly enriched in the 
postsynaptic density fraction from rat brain 
(1 1 ,  22). They were found to co-localize 
when cultured hippocampal neurons were 
double-labeled with antibodies (20, 23) for 
each protein (Fig. 3, A through C). Both 
proteins were concentrated along dendrites 
at putative synaptic sites in dense clusters 
that had virtually identical shape and size. 
Furthermore, in situ hybridization in rat 
brain (24) demonstrated that PSD-95 tran- 
scripts are highly expressed in most neuro- 
nal populations (Fig. 3D), as are transcripts 
for NMDA receptors (3 ,4 )  (Fig. 3E).  his, 
these proteins have the potential to interact 
in most, if not all, central glutamatergic 
synapses. We postulate that partnership be- 
tween PSD-95 and NMDA receptors is im- 
portant in the assembly of multiprotein 

complexes with diverse functions. A data- 
base search retrieved numerous other recep- 
tors and channel proteins with a tSXV motif 
(Table 1). Although interaction of these 
with proteins carrying PDZ domains remains 
speculative at this time, members of a volt- 
age-gated K+ channel family present a likely 
case, reminiscent of that documented here 
for NMDA receptors. Rat RCK subunits en- 
coded by distinct genes (25) terminate in 
similar tSXV sequences, and splice variants 
of the homologous Drosophila Shaker gene 
(26) with divergent COOH-terminal se- 
quences converge in an identical tSXV se- 
quence. We propose that tSXV-PDZ domain 
interactions play a general role in connect- 
ing receptors and channels to signal trans- 
duction machineries (27). 
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