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The chemokine RANTES induced biphasic mobilization of Ca?* in T cells. The initial peak,
a transient increase in cytosolic Ca2* mediated by a heterotrimeric guanine nucleotide-
binding protein (G protein)-coupled pathway, was associated predominantly with che-
motaxis. The second peak, Ca?* release and sustained influx dependent on protein
tyrosine kinases, was associated with a spectrum of cellular responses—Ca?* channel
opening, interleukin-2 receptor expression, cytokine release, and T cell proliferation—
characteristic of T cell receptor activation. Other chemokines did not produce these
responses. Thus, in addition to inducing chemotaxis, RANTES can act as an antigen-

independent activator of T cells in vitro.

RANTES is a potent chemoattractant cy-
tokine (chemokine) for monocytes and T
cells of the memory phenotype (1). The
molecular mechanisms by which RANTES
and other chemokines induce migration,
and whether they are responsible for other
regulatory effects on T cells, have not been
thoroughly investigated. The chemokine
receptors identified to date by molecular
cloning all share a seven—transmembrane
domain (7TM) architecture and thus are
thought to be coupled to G proteins (1).
Studies with monocytes and granulocytes
have suggested that chemokine receptors
may be linked to pertussis toxin (PTX)-
sensitive G proteins (2); however, although
G proteins have been implicated (3), the
signal-transducing molecules in T cells are
less well defined. In contrast to signaling by
chemokines, a great deal of research has
focused on T cell activation through the T
cell antigen receptor (TCR) (4). As with
many growth factor receptors, TCR signal-
ing is independent of G protein activation
and unaffected by PTX (5), but is abolished
by the protein tyrosine kinase (PTK) inhib-
itors genistein and herbimycin A (HA) (6).
Similar experiments with a variety of recep-
tors and cell types have led to the widely
accepted premise that most surface recep-
tors signal through either PTK or G pro-
tein—coupled pathways.

In a normal human T cell clone (7)
loaded with the fluorescent Ca’* indicator
indo-1 (8), RANTES applied at 1 to 100
nM induced a transient increase in cytoso-
lic free Ca’* concentration ([Ca?*]) that
peaked at 20 to 30 s and returned to resting
values within 5 min (Fig. 1A). At 1 uM,
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however, RANTES elicited a biphasic
[Ca®*], profile, consisting of a small early
transient and a secondary larger and pro-
longed increase (9). The increase in [Ca’*],
induced by I wM RANTES was of similar
amplitude to that induced by stimulation of
the TCR complex with saturating doses of
antibody to CD3 (anti-CD3) (5 pg/ml) or

the mitogen phytohemagglutinin (PHA)

(10 pg/ml). However, TCR agonists elicit-
ed only the later, sustained phase of the
Ca’" response (Fig. 1B). Other chemokines
that attract T cells—monocyte chemotactic
protein—1 (MCP-1), macrophage inflam-
matory protein—la (MIP-1a), and interleu-
kin-8 (IL-8)—induced only the initial,
transient increase in Ca’*. In the presence
of EGTA as an extracellular Ca?* chelator,
RANTES still induced a biphasic release of
Ca’t from intracellular stores, but bhoth
peaks were transient and reduced in ampli-
tude (Fig. 1C). By 5 min after RANTES
stimulation, >90% of the sustained in-
crease in [Ca’*], was attributable to Ca?*
entry from the extracellular medium.

To examine the nature of the RANTES-
activated Ca’*-permeation pathway, we
used the whole-cell configuration of the
patch-clamp technique (10). In T cells
clamped at —60 mV, a sustained inward
current developed after a short lag (peaking
at ~2 min) in response to 1 pM RANTES
(Fig. 1D). Such currents were absent from
unstimulated control cells. The whole-cell
currents induced by RANTES were small
(range of 9 to 14 pA at —60 mV), highly

selective for divalent over monovalent cat-
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Fig. 1. RANTES-induced Ca?* signaling in clonal human T cells. (A) Dose-dependent effect of RANTES
at final concentrations of 1 nMto 1 uM on [Ca?*],. Cells were suspended in a stirred cuvette and RANTES
additions were made at the time indicated by the bold arrow (8). (B) Comparison of Ca®* mobilization
induced by RANTES (1 uM), anti-CD3 (5 pg/ml), and PHA (10 wg/ml). (C) The biphasic [Ca?*], profile
observed with 1 uM RANTES results from two distinct phases of Ca®* release followed by sustained
Ca?™ influx. The increase in [Ca?*]; observed in the presence of 2 MM extracellular Ca2* (upper trace)
was reduced by chelating extracellular Ca2* with 3 mM EGTA (lower trace), revealing two phases of Ca®*
release from stores. The difference between the two traces reflects Ca?* influx. (D) Biophysical properties
of Ca?* entry currents activated by RANTES in whole-cell patch-clamp experiments. At a holding
potential of =60 MV, an inward Ca?* current developed after a short delay following the addition of 1 M
RANTES. The current amplitude was reversibly reduced by substitution of external Ca®™* by Ba?*+ (2 mM),
indicating selectivity for Ca®* over Ba®*. Addition of 10 mM Ca?* abruptly increased the current
amplitude, further showing that the conductance is permeable to Ca?*. (E) Whole-cell -V curves
recorded with voltage-ramp protocols. Four superimposed /-V curves comparing currents obtained
before RANTES addition (in 2 mM Ca?*) and after RANTES addition in solutions containing 2 mM Ba?™,
2 mM Ca?*, or 10 mM Ca?* are shown. The voltage was ramped from —100 to +60 mV. Data shown
in (D) and (E) were obtained from the same cell, which was representative of seven cells that responded
to RANTES when studied with the whole-cell patch-clamp technique.
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Fig. 2. Differential inhibi- A
tion of the first and sec-
ond phases of RANTES-
induced Ca?* mobiliza-
tion by PTX and HA. (A)
Incubation of clonal hu-
man T cells with PTX
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and incubation with HA (2 uM) for 18 hours inhibited the second, sustained phase, of Ca?* mobilization.
The combination of PTX with HA completely abolished all changes in [Ca?*], in response to 1 pM
RANTES. Cells and recordings of [Ca2*], were analyzed as described for Fig. 1. (B) Dissection of two
separable phases of Ca?* release with PTX and HA in the absence of extracellular Ca2*. PTX and HA
each inhibited one component of the biphasic release of stored Ca?*. Cells were incubated with inhibitors
as in (A) and EGTA (83 mM) was added immediately before addition of RANTES.

ions (11), and mediated by Ca®* to a great-
er extent than Ba’?* (Fig. 1D). Superim-
posed voltage-ramp, current-voltage (I-V)
curves (—100 to +60 mV) (Fig. 1E) re-
vealed inwardly rectifying currents that lack
voltage-dependent gating and display a very
positive (>+60 mV) reversal potential, as
expected for a selective Ca?* conductance.
These properties are identical to those of
the Ca’* release—activated Ca?* current
(I...) (12) observed in the Jurkat T cell
line after TCR stimulation, inositol
trisphosphate release, or direct depletion of
the Ca?* stores (13). Thus, the Ca’* re-
lease, sustained Ca?™ influx, and Ca?™* cur-
rent properties suggest that RANTES mim-
ics several of the earliest hallmarks of T cell
activation.

The C-C chemokine receptor 1 (CKR-
1), a 7TM receptor that binds RANTES
(14), activates PTX-sensitive G proteins
when expressed in human kidney cells (15).
We therefore tested the effects of incuba-
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Fig. 3. Stimulation of tyrosine phosphorylation by
RANTES. Untreated T cells or cells that had been
pretreated with 2 wM HA were stimulated with 1
M RANTES, anti-CD3 (5 pg/ml), or PHA (10 pg/
ml), and cell lysates were resolved under reducing
conditions by 10% SDS-polyacrylamide gel elec-
trophoresis. Proteins were then transferred to Im-
mobilon P membranes, which were incubated se-
quentially with antibodies to phosphotyrosine,
horseradish peroxidase—conjugated secondary
antibodies, and ECL reagent, and exposed to film.
Lanes 1 and 2, 1 and 3 min after stimulation,
respectively. All panels were loaded and exposed
identically and are from a single representative
blot. These results are typical of those obtained in
five similar experiments. Molecular size standards
are indicated in kilodaltons.

1728

tion with PTX (100 ng/ml) for 18 hours on
cloned T cells. Whereas PTX completely
and selectively inhibited the initial, tran-
sient phase of RANTES-induced Ca®*
mobilization (Fig. 2A), the magnitude and
kinetics of the second, long-lasting peak of
Ca’?* mobilization were unaffected. Be-
cause this second phase of the RANTES-
induced Ca’™ response was similar to that
seen after stimulation of T cells by anti-
CD3 or PHA, a role for tyrosine phospho-
rylation in RANTES signaling was indicat-
ed. We therefore examined whether the
PTX-insensitive Ca?* entry pathway was af-
fected by PTK inhibitors (16). HA, a selec-
tive inhibitor of Src family PTKs, inhibited

Fig. 4. Functional assays of
T cell chemotaxis and acti-
vation. (A) Chemotaxis of T
cells induced by RANTES
(®) was inhibited by PTX (&)
and unaffected by HA (00).
Cells were incubated with
PTX (100 ng/ml, 18 hours) or
HA (2 pM, 18 hours),
washed (250g, 10 min), re-
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in a potent and selective manner the second
phase of the RANTES-induced Ca?* re-
sponse (50% inhibitory concentration, 0.2
uM), leaving the initial Ca?* transient in-
tact (Fig. 2A). PTX and HA appear to act by
blocking the production of inositol trisphos-
phate rather than by inhibiting Ca?* entry;
in the absence of extracellular Ca?*, each
still selectively prevented one phase of Ca?*
release from stores (Fig. 2B). These results
show that RANTES acts through two phar-
macologically distinct signal transduction
cascades, one linked to PTX-sensitive G pro-
teins, and one to PTK activation. In addi-
tion, these pathways appear to be indepen-
dent, because each remained unaltered when
the other was fully inhibited.

To analyze further the role of PTKs, we
performed immunoblot analysis of whole-
cell lysates from quiescent cells (17) with
antibodies to phosphotyrosine. Stimulation
with RANTES increased phosphorylation of
a large number of proteins between 30 and
200 kD (Fig. 3). The pattern and kinetics of
phosphorylation induced by RANTES mim-
icked those induced by anti-CD3 or by
PHA; the time course paralleled the pla-
teau response of the second phase of Ca’*
mobilization. Phosphorylation induced by
RANTES, PHA, or anti-CD3 was com-
pletely inhibited by HA (Fig. 3) (9).

The biological outputs of the G protein
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suspended in normal cell cul-
ture medium, and assayed
as previously described (27).
Each point represents the
mean = SEM number of cells
per five high-power fields
(HPFs) for four experiments
performed in duplicate. (B)
Effect of RANTES (1 uM) on
surface expression of the
IL-2 receptor (IL-2R). Cells
were cultured in serum- and
IL-2—free medium and then s
stimulated with RANTES for 5
48 hours. IL-2R expression
was measured by fluores-
cence-activated cell sorting
(22) with a specific antibody
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3001 1.5

N
&

n
8

Cytokine (ng/ml)
g g

@
o

]
4 24 48

RANTES (M)

o
RANTES stimulation (hours)

o° 10! 102 103
Fluorescence intensity

3
9 |
@
>

17,500
15,000
12,500
10,000
7,500
5,000
2,500

2072

15
10

5

[H]Thd uptake (cpm) O

0
4 2448

ontrol

1

1

1

1

1
106 M + PTX
106 M + HA

[
RANTES

to IL-2R. (C) Effect of RANTES on cytokine production. Quiescent T cells for serum and IL-2, were
incubated for 4, 24, or 48 hours with 1 uM RANTES, after which the supernatants were collected and
assayed for IL-2 or IL-5 by specific enzyme-linked immunosorbent assays (23). Values are means = SEM
of three experiments. (D) The effect of RANTES on T cell proliferation. Quiescent cells were incubated with
no treatment (—), HA (2 wM), PTX (100 ng/ml), anti-CD3 (5 wg/ml), or the indicated concentrations of
RANTES for 48 hours. Each histogram represents the mean + SEM of [*H]thymidine (Thd) incorporation
(counts per minute) for five experiments. The bar representing IL-2 alone demonstrates the normal, basal
proliferation (survival) level of the clone under typical culture conditions.
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and PTK pathways were assessed with the
use of several assays. RANTES-induced
chemotaxis was completely inhibited after
incubation of T cells with PTX, but was
unaffected by HA (Fig. 4A). T cell acti-
vation, characterized by the up-regulation
of the IL-2 receptor and the production of
cytokines, was also affected by RANTES,
which consistently increased [L-2 receptor
expression (Fig. 4B) and markedly in-
creased both IL-2 and IL-5 production
(Fig. 4C). RANTES had no measurable
effect on IL-4 or interferon v. Lastly, T
cell proliferation was markedly increased
by RANTES. At a concentration (1 pM)
that triggered the second phase of Ca**
mobilization, RANTES induced a >10-
fold increase in T cell proliferation, simi-
lar to the effect of anti-CD3 (Fig. 4D).
RANTES-induced proliferation was com-
pletely abolished by treatment with HA,
but was unaffected by PTX. The chemo-
kines MCP-1 and MIP-1q, at the same
concentration as RANTES, failed to elicit
similar responses. Thus, RANTES, in iso-
lation of other activating or costimulating
agents, can functionally induce T cell pro-
liferation in a manner similar to mitogenic
stimulation.

The RANTES-induced responses ob-
served in our study may not be mediated
exclusively through the C-C CKR-1. We
have isolated another 7TM receptor, show-
ing substantial homology to C-C CKR-I,
from the T cell clone used here (18). It is
unlikely that any of the antigen-indepen-
dent activation signals occur via stimula-
tion of the TCR at high concentrations of
RANTES. Related chemokines with similar
charge profiles and aggregation properties
induced neither the second phase of the
signaling response nor T cell proliferation
when used at equimolar concentrations.
Moreover, several Jurkat T cell lines re-
sponded to TCR stimulation with anti-CD3
but not to RANTES, even at concentra-
tions up to several micromolar. Indeed, the
bioactive concentration of RANTES in the
present study is still an open issue. Most
chemokines are thought to be active in
either the monomer or dimer (unaggre-
gated) form (19). Because RANTES is al-
most completely aggregated in solution at a
pH of >4.0 (19), it is likely that the actual
effective concentrations of RANTES used
in this study are less than those listed. Ad-
ditionally, physiological concentrations of
chemokines in the micromolar range have
been posited. Chemokines show high affin-
ities for cell surface proteoglycans (20), as a
result of which they are sequestered and
presented to target cells at high concentra-
tions within a local microenvironment.

RANTES-induced signaling in T cells
appears distinct from that described for li-
gands of other 7TM receptors in that PTKs

SCIENCE  »

are recruited together with G proteins. The
demonstration of elaborate parallel molecu-
lar signals induced by RANTES suggests a
complex physiological mechanism for con-
trol of multiple T cell functions. A coordi-
nated program can be envisaged whereby G
protein—mediated migration at low relative
concentrations of chemokine leads to infil-
tration at sites of high concentrations of
RANTES sequestered by proteoglycans, re-
sulting in activation and proliferation by
means of the PTK cascade. This scenario
may have implications for chronic inflam-
matory pathologies for which the identifica-
tion of persistent antigen has been elusive.
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maintained in IL-2—containing medium; thus, the
level of IL-2 receptor expression is high and small
changes are masked.

Enzyme-linked immunosorbent assay measure-
ments were made according to standard protocols
with quiescent T cells, in order to avoid the high basal
expression of cytokines such as IL-2, IL-5, and IL-4.
Antibodies [anti-IL-5 (39D10), rat immunoglobulin
(Ig) G2a; anti-IL-4 (8D4-8), mouse IgG1; anti-inter-
feron -y (A35), mouse IgG1; anti-IL-2 (BG-5), mouse
IgG1] (DNAX) were coated onto the wells of a 96-
well polyvinyl chloride plate and incubated for 2
hours at 37°C. After washing the wells, the samples
were incubated with the coating antibody for 2 hours
at room temperature, after which the wells were
washed and incubated for 1 hour at room tempera-
ture with nitroiodophenylacetate-coupled secondary
antibodies (50 wg/ml) [anti-IL-5 (5A10), rat 1gG2a;
anti-IL-4 (MP4-25D2), rat IgG1; anti-interferon y
(B27), mouse IgG1; anti-IL-2, goat polyclonal]
(DNAX). Immune complexes were revealed by incu-
bation with tertiary horseradish peroxidase—coupled
antibodies to nitroiodophenylacetate for 1 hour at
room temperature. After incubation, ABTS solution
was added and absorbance at 405 to 600 nm mea-
sured after the color had developed. Results were
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analyzed with SoftMax software (Molecular Devices)
to obtain absolute protein values.
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Regulation of Hippocampal Transmitter Release
During Development and Long-Term Potentiation

Vadim Y. Bolshakov and Steven A. Siegelbaum

Developmental changes in rat hippocampal transmitter release and synaptic plasticity
were investigated. Recordings from pairs of pyramidal neurons in slices showed that an
action potential in a CA3 neuron released only a single quantum of transmitter onto a CA1
neuron. Failures of synaptic transmission reflected probabilistic transmitter release. The
probability of release (P,) was 0.9 in 4- to 8-day-old rats and decreased to less than 0.5
at 2 to 3 weeks. Long-term potentiation (LTP) in 2- to 3-week-old rats was associated with
an increase in P, from a single synaptic site. The high initial P, in 4- to 8-day-old rats
normally occludes the expression of LTP at this stage.

Long-term potentiation (LTP) (I) and
long-term depression (LTD) (2) of hip-
pocampal synaptic transmission are oppos-
ing forms of activity-dependent plasticity
that may underlie learning and memory and
the fine tuning of synaptic connections dur-
ing development (3). The expression of
hippocampal LTP and LTD in rats changes
markedly during the first 3 weeks after
birth, a critical period in the establishment
of synaptic connections (4). Whereas LTP
is observed only in rats that are >2 weeks
old (5, 6), LTD is most prominent during
the first 10 days after birth (6, 7). This
complementary pattern of expression of
LTP and LTD is likely important for the
formation of the normal pattern of synaptic
connections and early learning and memo-
ry. However, controversy surrounds the ba-
sic properties of synaptic transmission and
long-term plasticity in the hippocampus (I,
8), and the mechanisms underlying these
developmental changes remain unknown.
This uncertainty is attributable, in part, to
difficulties in recording from individual
pairs of synaptically connected hippocam-
pal neurons; most studies have relied on
recordings from populations of pre- and
postsynaptic cells (I, 8).

We have now used two approaches that
permit the routine recording of synaptic
transmission between single CA3 and CA1
pyramidal neurons in hippocampal slices:
(i) dual whole-cell patch clamp recording
(Fig. 1A) (9, 10); and (ii) focal stimulation
of a single presynaptic neuron, by pressing
an extracellular stimulating patch pipette
onto an individual CA3 cell body (11, 12),
and whole-cell recording from a postsynap-
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tic CAl neuron. Both methods resulted in
identical postsynaptic responses (13). How-
ever, most experiments (24 of 36) were
performed with extracellular stimulation
because of the difficulty in obtaining stable
dual whole-cell recordings.

A given CA1 neuron received functional
synaptic input from ~5% of the CA3 neu-
rons tested (Fig. 1A) (14). In a synaptically
connected pair of neurons from a 6-day-old
rat, most CA3 action potentials elicited an
excitatory postsynaptic current (EPSC) of ~
—4 pA in a CAl cell (Fig. 1B). Some
stimuli failed to elicit an EPSC. A frequency
histogram of EPSC amplitudes showed two
prominent peaks that were fitted by the sum
of two Gaussian functions (Fig. 1C). One
peak, centered at O pA with a standard
deviation identical to that of the back-
ground noise, reflected failures of transmis-
sion. The second peak, centered at ~—4
pA, contained most events and reflected
successes of transmission. There were no
additional peaks at higher current levels. In
synapses from young animals (4 to 8 days
old), the fraction of successes was consis-
tently high and averaged 0.9 (13). In com-

“parison, in slices from older rats (13 to 23

days old), the fraction of successes was sig-
nificantly lower (<0.5) (Fig. 1, D to F) in
agreement with previous, less direct results
(15). In other respects, however, transmis-
sion in older rats resembled that in younger
rats: The EPSC amplitude histogram showed
only two peaks, one at O pA and one at
~—4 pA (Fig. 1, D and E).

The simplest interpretation of these re-
sults, based on the classical quantal theory
of Katz (16), is that a given CA3 neuron
makes only a single synaptic contact with a
given CA1 neuron. At this contact, a pre-
synaptic action potential either fails to re-
lease transmitter or evokes an EPSC that






