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CDC25 Phosphatases as Potential
Human Oncogenes

Konstantin Galaktionov, Arthur K. Lee, Jens Eckstein,
Giulio Draetta, Jason Meckler, Massimo Loda, David Beach*

Cyclin-dependent kinases (CDKs) are activated by CDC25 phosphatases, which re-
move inhibitory phosphate from tyrosine and threonine residues. In human cells,
CDC25 proteins are encoded by a multigene family, consisting of CDC25A, CDC258B,
and CDC25C. In rodent cells, human CDC25A or CDC25B but not CDC25C phos-
phatases cooperate with either Ha-RAS%"2Y or loss of RBT in oncogenic focus for-
mation. Such transformants were highly aneuploid, grew in soft agar, and formed
high-grade tumors in nude mice. Overexpression of CDC25B was detected in 32
percent of human primary breast cancers tested. The CDC25 phosphatases may
contribute to the development of human cancer.

A family of related cyclin-dependent ki-
nases (CDKs) regulates progression
through each phase of the cell division
cycle (1). These proteins are positively
regulated by association with cyclins (2)
and activating phosphorylation by the
CDK-activating kinase (CAK) (3). Nega-
tive regulation of the CDKs is achieved
independently by at least two different
mechanisms: binding of the inhibitory
subunits (p21, p16, p15, p27, and p18) (4)
and phosphorylation of conserved threo-
nine and tyrosine residues, usually at po-
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sitions 14 and 15 in CDKs (5). In fission
yeast, phosphorylation on inhibitory resi-
dues is negated by the CDC25 dual spec-
ificity phosphatase, whose only known
function is the removal of inhibitory phos-
phate on the CDC2 kinase (6). In hu-
mans, there are three CDC25-related

genes that share approximately 40 to 50%'

amino acid identity (7, 8). Human
CDC25 genes function at the G, or S
phase of the cell cycle (9) and at the G, or
M phase (8, 10). Several mammalian cell
cycle genes participate in neoplastic trans-
formation (1). As a rule, these genes func-
tion early in the cell cycle in G, or at the
G,-S border. Because some of the CDC25
genes have been implicated in the progres-
sion from G, to the S phase, we reasoned
that CDC25 might display oncogenic
properties in mammalian cells.

We introduced CDC25A, B, or C on a
mammalian constitutive expression vector
into normal mouse embryo fibroblasts at
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early passage (11). Cells were transfected
with these plasmids either alone or in com-
bination with oncogenic versions of H-RAS
in which Gly'? was changed to Val (G12V)
or mutant p53 [where Glu?*® was changed
to Lys (E258K)]. The cells were then plated
in either nonselective or selective (G418)
media. After 4 to 5 weeks, the plates were
stained and photographed to detect the for-
mation of potentially transformed foci. In
these assays, we observed oncogenic coop-
eration between CDC25A or CDC25B and
H-RASS!?V (Fig. 1A). No cooperation be-
tween CDC25C and RAS was detected. A
few weak foci were formed upon transfec-
tion of CDC25A alone, and only slightly
more were observed with the combination
of CDC25A and mutant p53 (Fig. 1A). No
focus formation was observed with
H-RASC!?Y alone (12). Clones isolated
from the CDC25A-RAS and CDC25B-
RAS foci mildly overexpressed CDC25 pro-
teins (two to three times more protein than
that in parental cells) (13). G418-selected
colonies were counted to assess transforma-
tion efficiency (14). In all experiments,
similar numbers of the G418-selected colo-
nies were obtained.

Microscopical examination of the cells
expressing CDC25A and RAS or CDC25B
and RAS revealed a transformed cell mor-
phology indicated by multilayer growth,
loose attachment to the substrate, and an-
euploidy (14). Cells from individual foci
readily grew in the presence of G418, which
demonstrates that they represent cells
transfected with the plasmids rather than
spontaneously transformed mouse cells.
Cells cotransfected with CDC25A or
CDC25B and H-RASC!?V together with
relevant controls were tested for the ability
to form colonies in soft agar (15). At 3
weeks we detected formation of tight colo-
nies with cells derived from any of three
independent foci of the cells transfected
with RAS and CDC25A or RAS and
CDC25B cotransfected cells (Fig. 2). To
verify the tumorigenic potential of these
cells, we introduced them into nude mice
(15). After 20 to 25 days, we detected
tumor formation in all experimental ani-
mals injected with cells transfected with
CDC25A and RAS or CDC25B and RAS
(in each case eight mice were injected).
The average size of tumors 25 days after
injection was 5.6 = 1.7 mm for CDC25A-
RAS and 7.4 = 2.5 mm for CDC25B-RAS
transfection. No tumors were detected in
mice injected with G418-selected cells that
had been transfected with either RAS or
CDC25 alone or with the parental vector
plasmid (Table 1).

In human tumors, mutations in RAS of-
ten coincide with mutations or deletions in
the tumor suppressor genes p53 and RBI.
We therefore investigated whether defects
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in p53 and RBI could render normal fibro-
blasts susceptible to the oncogenic effects of
CDC25A overexpression. We introduced
CDC25A into RB~/~ or p53~/~ fibroblasts
(16) and after 4 weeks scored the formation
of oncogenic foci. Focus formation was ob-
served in the RB~/~ cells (Fig. 1B). In the
case of p53~/~ cells, we selected transfor-
mants with G418 and hygromycin B be-
cause p53~/~ cells overgrow upon periodic
addition of fresh media and foci cannot be
visually detected and scored on the back-

ground of untransfected cells. RB~/~ or

p53~/~ cells transfected with CDC25A or a
parental vector plasmid were further grown
in the continuous presence of G418 and
hygromycin selection. Experiments assaying
growth in soft agar and in nude mice dem-
onstrated the oncogenic properties of
CDC25A-transfected RB~/~ cells but not
those of p53~/~ cells (Fig. 2 and Table 1).
All cells transfected with control plasmids
were nononcogenic (Fig. 2 and Table 1).
In light of the in vitro evidence that
CDC25 can act as an oncogene, we analyzed

A

L

CDCZ5A+ CDC25B+  CDC25C

CDC25C +

CDC25A e

H-RASGT2V

CDC258 +
H-RASG12V

RcCMV-CDC25A

Fig. 1. Oncogenic cooperation between CDC25
and H-RASS"2Y and oncogenic foci of the RB~/~
cells, transfected with CDC25A. (A) Foci formation
after transfection of normal mouse fibroblasts with
various plasmids. (B) RB~/~ primary fibroblasts,
transfected with CDC25A or control plasmid
(RcCMV). Photomicrographs of the transformed
foci were on the lawn of the RB~/~ cells.
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CDC25 expression in cell lines derived from

" various human tumors. High levels of

CDC25 expression were detected in several
cell lines, including those that originated
from human breast cancer (17). We there-
fore investigated the expression of CDC25
in a characterized series of human primary
breast cancers. The study population (18)
consisted of a retrospective series of tissues
from 124 patients with axillary node—nega-
tive invasive breast cancer who were treated

cMmv

H-RASG12V

ps3’
CMV

Fig. 2. Photomicrographs of the colonies in -

semisolid agarose. Mouse embryo fibroblasts
(MEFs) were transfected with vector alone
(CMV) or with vectors with CDC25A or
H-RASG72Y, CDC25B, and H-RASY"2, as indi-
cated; RB~/~ cells or p53~/~ cells were also
transfected with CDC25A and RcCMV as indi-
cated. All cells were grown in semisolid agarose
for 3 weeks.

between 1972 and 1982. The patients were
all treated by modified radical mastectomy,
without perioperative adjuvant therapy, and
had a median follow-up of 11 years. Cancer-
ous tissue from these patients had been char-
acterized in terms of size, histologic and
nuclear grade, mitotic rate, peritumoral lym-
phovascular invasion, microvessel density,
and p53 status (19, 20).

Normal and neoplastic archival tissue
was used for in situ hybridization with anti-
sense riboprobes for CDC25A, B, and C
(21). There was no detectable expression of
CDC25C in normal or tumor tissue, and no
detectable expression of CDC25B by in situ
hybridization was seen in normal breast tis-
sue (Fig. 3A). However, CDC25B was over-
expressed in 32% of the neoplastic tissue
samples (Fig. 3A). In many tumors (Fig. 3,
A and B), practically all cells displayed large
amounts of CDC25B mRNA, further under-
scoring the full deregulation of its expres-
sion. No correlation between the mitotic
index of the particular tumor and CDC25B
overexpression was found (P = 0.849).

To further investigate the significance of
the observed tumor-specific CDC25 overex-
pression, we correlated CDC25B expression
with other tumor-specific markers. There
was a strong correlation between CDC25B
overexpression and microvessel density (19,
20) (P = 0.038), a negative prognostic fea-
ture indicative of augmented angiogenesis in
breast cancer (20). CDC25B positivity was
more frequently seen in higher histologic
grade cancers (P = 0.02) in which nuclear

Fig. 3. Tumor-specific overexpres-
sion of CDC25B in breast cancer pa-
tients. CDG25B expression was visu-
alized after hybridization with a digoxi-
genin-labeled CDC25B probe (217)
with NBT-BCIP (27). (A) Stained
breast cancer cells are on the right,
normmal breast cells are on the left. (B
and C) CDC25B-positive (B) and
CDC25B-negative (C) tumors. Almost
all visible cells of the CDC25B-positive
tumor are overexpressing CDC25B.
All cells were counterstained with
methyl green. (Inset) Up to 100% of
the cells in the tumor are overexpress-
ing CDC25B. Magnification; X200,

(A); X400, (B) and (C). Inset, x400.
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atypias are more frequent. Patients with high
levels of CDC25B expression in tumor cells
had a distant recurrence rate of 41.9%,
whereas those who expressed little or no
CDC25B mRNA had a 29.1% recurrence
rate at 10 years. Similarly, 37.2% of over-
expressors versus only 19.9% of CDC25B-
negative patients were dead of their disease
after 10 years.

CDC25A and possibly CDC25B phos-
phatases associate with Rafl, a kinase that
is activated by RAS (13). Furthermore, Rafl
phosphorylates and activates CDC25 in
vitro, which suggests a possible mechanism
for the observed synergism between RAS
and CDC25. The difference in oncogenic
potential between various CDC25 proteins
might be attributed either to differences in
their cell cycle timing or substrate specific-
ity (8-10).

The most dramatic effect of CDC25A
expression was observed in fibroblasts
lacking the tumor suppressor RBI, in
which introduction of the CDC25A gene
alone causes oncogenic transformation
(Fig. 2). The ability of CDC25 phosphata-
ses to show oncogenic cooperation with
either oncogenic RAS mutants or RBI
deletion mutants underscores the poten-
tial significance of CDC25 overexpression
in the development of human malignan-
cies. In support of this suggestion,
CDC25B was found to be highly expressed
in 32% of the primary breast cancers. Tu-
mor-specific expression of CDC25B in hu-

Table 1. Oncogenic transformation of the wild-
type mouse fibroblasts by the ectopic expression
of CDC25 genes in cooperation with H-RASG72Y
or RB~/~ fibroblasts by CDC25A alone. ++ and
+ ++ indicate foci formation or growth in semisol-
id agarose; +/— indicates infrequent formation of
less transformed foci upon MEF transfection with
CDC25A or CDC25B plasmids. NA indicates that
none of the mice had tumors (0/8); for those that
had tumors (8/8), the time until the tumors
reached 5 mm in size is an average of their occur-
rence in eight of eight mice. ND, not done; —
indicates no foci formation or no growth in semi-
solid agarose.

Days on
average
Plasmids MEF Foci Soft for tumor
cells agar 4 reach
5mm
CDC25A + WT +4++  ++ 25
H-RASV'2
CDC25A WT +/- = NA
CDC25B + WT +++  ++ 20
H-RASV?2
CDC25B WT +/- - NA
H-RASV12 WT - - NA
RcCMV WT - - NA
CDC25A RB~/= ++4++ +++ 17
RcCMV RB™” - - NA
CDC25A p53~/~ ND - NA
RcCMV p53~/~ ND - NA
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man breast carcinomas correlates with less
favorable prognosis and survival. Our re-
sults suggest that alterations in the func-
tion of CDC25A and CDC25B by overex-
pression might promote oncogenic trans-
formation in vivo and further suggest that
CDC25 phosphatases (A and B) are novel

potential oncogenes.
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