
C a l ~ f o r n ~ a  has been cooling (15).  Curiously, 
thelr isotope record also polnts to cooling 
by -7"C, a l t h o ~ ~ g h  they caution that the  
a c t ~ ~ a l  temperature effect is close to 3 O ,  the 
rest being an  effect related to variatrons in 
the history of air masses. 

If valid, the  contrasting trends in climate 
between the rnidwestern and western Unit-  
ed States call be reconciled by exanlilling 
present-day weather systems and how ell- 
mate is influenced by the  posltlotl of the jet 
stream. Whenever the  mldwestern regions 
lie o n  a high-pressure ridge, drawrng in 
\trarm inolsture from the Gulf of Mexico and 
blocking off the dry, cool continental air 
masses, the western regions experience 

inilder temperatures, and vice versa. There- 
fore, if the  mid-Holocene period was 
marked by sustained intrusion of the  Gulf of 
Mexico air inass into the  inidnestern re- 
gion, contrasting cliinatic conditions within 
the continental U n ~ t e d  States are indeed 
conceivable. 
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Requirement for Src Family Protein Tyrosine 
Kinases in G, for Fibroblast Cell Division 

Serge Roche," Stefano Fumagalli, Sara A. Courtneidget$ 

The protein tyrosine kinase c-Src is transiently activated at the transition from the G, 
phase to mitosis in the cell cycle of mammalian fibroblasts. Fyn and Yes, the other 
members of the Src family present in fibroblasts, were also found to be activated at 
mitosis. In cells microinjected with a neutralizing antibody specific for Src, Fyn, and Yes 
(anti-cst.1) during G,, cell division was inhibited by 75 percent. The block occurred 
before nuclear envelope breakdown. Antibodies specific for phosphatidylinositol-3 
kinase a and phospholipase C-yl had no effect. Microinjection of the Src homology 
2 (SH2) domain of Fyn was also inhibitory. Functional redundancy between members 
of the Src family was observed; a Src-specific antibody had no effect in NIH 3T3 cells 
but inhibited cell division in fibroblasts in which the only functional Src family kinase 
was Src itself. Thus, Src family kinases and proteins associating with their SH2 domains 
are required for entry into mitosis. 

T h e  nroto-oncopene nroduct cSrc and re- ,~, 

lated enzymes are activated during t h e  tran- 
sition from the Go to the G, phase of the 
cell cvcle in resnonse to some growth fac- 
tors ( i-3), and lkcroinjection s h i e s  have 
shown that thev are necessarv for some 
growth factors to transmit ~nitogenlc signals 
(4 ,  5) .  c-Src is also activated as fibroblasts 
enter nlitosis 16). Mitotic activation of c- ~, 

Src involves NH,-terminal serine and 
threonine phosphorylations-probably by 
the  cyclin-dependent protein kinase 
Cdc2-concomitant w ~ t h  a net  dephospho- 
rylation of Tyr5", the  regulatory site (7). A 
mitotic substrate of Src, known as p68 or 
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Sa11168, associates with the Src homology 3 
(SH3) and SH2 domains of Src (8-10). 
Sam68 is a heterogenous ribon~lclear pro- 
tein 11 1 ) and lnav have a function in R N A  , , 

transport, stabiliiy, or splicing. T h e  fact 
that mitotic substrates of Src can be detect- 
ed suggests that signal transduction path- 
ways involving tyrosine kinases may func- 
tion in mitosis. Here, we address whether 
the Src kinases are required for cell division. 

N I H  3T3 cells express three nlembers of 
the  Src family: Src, Fyn, and Yes. T o  deter- 
inine whether Fyn and Yes, like Src, be- 
coine activated during mitosis, we measured 
their activities in N I H  3T3 cells overex- 
pressing these enzymes, both during inter- 
nhase and in cells blocked in initosis bv 
nocodazole treatment (Fig. 1). After immu- 
noprecipitation of Fyn or Yes with antibod- 
ies specific to  each proteln, both autophos- 
phorylation and phosphorylation of enolase 
were assessed. W e  observed activation of 
these enzylnes that was three to flve tiines 
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their activity in asynchronous extracts; this 
increase is similar to that observed for Src 
under the same conditions (11). The 
amounts of expression of Fyn and Yes were 
unchanged during mitosis (I 1 ). 

The activation of all three members of 
the Src family at the G2-mitosis (G2-M) 
transition point suggests that they may have 
a functional role at this stage of the cell 
cycle. To address this possibility, we micro- 
injected anti-cst.1, a neutralizing antibody 
specific for Src, Fyn, and Yes (5). Quiescent 

Fig. 1. Activation of Fyn A 
and Yes in mitotically ar- - --Fyn , - +Yes 
rested cells. Fyn and c- 

A A 
Yes were immunopre- 
cipitated from interphase B 
(A, asynchronous) or no- 
codazole-arrested (M, 
mitotic) cells, and kinase 
activity was measured 
(20). (A) Autophospho- 
rylation. Arrowheads in- 
dicate the autophospho- 
rylated kinase. (B) Eno- 
lase phosphorylation. 
Activation is relative to Fyn Yes 
the activity in asynchronous extracts, which was 
given a value of 1. The data were averaged from 
two separate experiments; values shown are 
mean 2 SD. 

Rg. 2. Arrest of cells microinjected with anti-cst.1 
before the onset of mitosis. (A) Cells were micro- 
injected with nonimmune IgG fraction during G,, 
and after 10 to 12 hours they were stained for 
antibody-positive cells. (B) Cells were microin- 
jected with anti-cst.1 during G, and were as- 
sessed as in (A). (C) A cell microinjected with anti- 
cst.1 was stained to reveal the microinjected an- 
tibody. (D) The same cover slip shown in (C) was 
stained with a rnAb to nuclear pore proteins (27). 
In all panels, the whiie arrowheads mark the po- 
sitions of injected cells. Original magnifications, 
x 10 (A and B) and x63 (C and D). 

fibroblasts seeded sparsely on cover slips 
were synchronously stimulated to enter the 
cell cycle with fetal calf serum (FCS). Anal- 
ysis with a fluorescence-activated cell sorter 
showed that after 16 to 18 hours, 70% of 
the cell population had a 2n DNA content 
and were in G2 (12). The cells were then 
microinjected with either nonimmune im- 
munoglobulin G (IgG) or anti-cst.1. After 
incubation for 10 to 12 hours at 37OC, cells 
were stained for the presence of rabbit IgG 
and examined. Most cells microinjected 
with nonimmune IgG had divided, and as a 
result, pairs of cells containing the rabbit 
IgG were detected (Fig. 2A). However, 
most cells microinjected with anti-cst.1 
were found sparsely and singly on the cover 
slip, which indicated that cell division had 
not taken place (Fig. 2B). 

To test whether the observed effect of 
the antibody was statistically significant, 
we microinjected a defined number of 
cells (usually 50 to 100 in each experi- 
ment). After 12 hours, cells containing 
antibody were counted, and a division in- 
dex (the ratio of antibody-positive cells to 
antibody-injected cells) was scored. The 
division index in control-injected cells 
was 1.8, but in anti-cst.1-injected cells it 
was only 1.2, which demonstrated that 
cell division was inhibited by approxi- 
mately 75% (Fig. 3). This effect appeared 
to be ipecific fo; the cst.1 epitope because 
it was at least partially relieved by incu- 
bation of the antibody with cognate pep- 
tide before microinjection. We also tested 
antibodies specific for two other signaling 
molecules, phosphatidylinositol-3 kinase 
a (PI3Ka) and phospholipase C-yl 
(PLC-~1). which are known to be re- 
quired 'foi'the transition from G, to S (the 
period of DNA replication) in response to 
some growth factors (13) and serum (in 
the case of PLC-y1) (12, 14); neither 
antibody inhibited cell division. 

To determine the stage of the cell cycle 
at which the anti-cst.1-injected cells were 
arrested, we stained them with a monoclo- 

Fig. 3. Requirement for Src family 
tyrosine kinases for cell division. (A) 
NIH 3T3 cells were microinjected in 
G, with the antibodies shown, and 
after 10 to 12 hours the number of 
antibody-positive cells was counted 
(22). (B) Fibroblasts lacking active 
Fyn and Yes ("Src fibroblasts") were 
microinjected in G, with the antibod- 
ies shown and were assessed as in 
(A). For each experiment 50 to 100 
cells were microinjected and the diii- 
sion index was calculated. The re- 
sults from several experiments (n > 
5) corresponding to 400 to 1 000 in- 
jected cells were averaged; values 
shown are mean 2 SD. 

nal antibody (mAb) specific for a nuclear 
pore protein (1 5) (Fig. 2, C and D). Nuclear 
pores were still detected in the microin- 
jected cells, which demonstrated that the 
block occurred before the breakdown of the 
nuclear envelope. In other experiments, we 
determined that chromatin was not con- 
densed in the anti-cst.1-microinjected cells 
(12), which confirmed that the block oc- 
curred before prophase. 

Anti-cst.1 recognizes Src, Fyn, and Yes 
in NIH 3T3 cells (2). When we microin- 
jected these cells with an antibody that 
recognizes only Src (anti-src.1) (3), we ob- 
served no inhibition of cell division (Fig. 
3A). To test whether this was the result of 
functional redundancy among the Src fam- 
ily kinases, we used "Src fibroblasts" de- 
rived from mutant mice that have no Fyn 
and only a catalytically inactive fragment of 
Yes (16). In cells microinjected with anti- 
cst.1 the division index was reduced from 
1.6 to 1.1; hence, the inhibition was similar 
to that observed in NIH 3T3 cells. Howev- 
er, although anti-src.1 had no effect in NIH 
3T3 cells, it did inhibit cell division in the 
fibroblasts that lacked catalytically active 
Fyn and Yes (Fig. 3B). These data demon- 
strate that Src family kinases share func- 
tional redundancy and that at least one 
member of the Src family is required for 
cells to exit G,. 

We next investigated whether the SH2 
or SH3 domains of the Src family kinases 
were needed for transition into mitosis. 
This question could not be addressed by 
microinjecting cells with plasmids encoding 
mutant Src molecules because the percent- 
age of microinjected cells that expressed the 
protein of interest was too small for statis- 
tical analysis. We therefore microinjected 
cells with glutathione-S-transferase (GST) 
fusion proteins (Fig. 4A). The SH2 domain 
of Fyn, linked to GST, inhibited cell divi- 
sion by approximately 70%. SH2 domains 
from guanosine niphosphatase activating 
protein for Ras (RasGAP), PI3K, and 
PLC-y1 had no effect. We also tested a 

NIH 3T3 fibroblasts 6 

*.~i 'Src fibroblasts' 
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series of GST-SH3 constructs and found 
that none were inhibitory (Fig. 4A) (12). 
To determine when in the cell cycle the 
block occurred, we stained GST-FynSH2- 
injected cells with antibodies specific for 
nuclear lamins (Fig. 4, B and C). This 
experiment, like the nuclear pore staining 
(Fig. 2), demonstrated that the nuclear 
structure was still intact. We conclude that 
the SH2 domain of Src family kinases is 
required for their effect before mitosis. 

Our data demonstrate that Src family 
kinases are required for the G,-M transi- 
tion. Inactivation of a tem~erature-sensi- 
tive mutant of v-Src during G, was found 

Fig. 4. Inhibition of cell division in cells overex- 
pressing the SH2 domain of Fyn. (A) NIH 3T3 cells 
were microinjected in G, with the purified proteins 
indicated, premixed with control rabbit IgG. After 
12 hours, the number of antibody-positive cells 
was assessed. The results from several experi- 
ments (n > 5) corresponding to 400 to 1000 
injected cells were averaged; values shown are 
mean 2 SD. GST fusion ~roteins were ~urified as 
described in (23). ~rotei"s were conce"trated up 
to 3 mg/ml and mixed with nonimmune IgG (final 
concentration 1 mg/ml) before microinjection. In- 
jected cells were detected as described (Fig. 2). 
(B) A cell microinjected with GST-FynSH2 pre- 
mixed with fluorescein-conjugated dextran (orig- 
inal magnification, ~ 6 3 ) .  (C) The same cover slip 
shown in (B) was stained with an antibody spe- 
cific for nuclear lamins A, B, and C. The arrow- 
head indicates the microinjected cell. 

to inhibit mitosis (17); however, those 
cells still contained endogenous, active 
Src, Fyn, and Yes, so it is not clear that the 
mechanism of inhibition was the same as 
we observed here, unless the catalytically 
inactive protein acted as a dominant neg- 
ative. Phosphorylation of a tyrosine resi- 
due of CdcZ inhibits the activity of CdcZ 
(18). Our data suggest that signal trans- 
duction cascades involving tyrosine ki- 
nases can also have a positive influence on 
the onset of mitosis. During G, many ty- 
rosine kinases, both receptor and nonre- 
ceptor types, activate the Ras mitogen- 
activated protein kinase (MAPK) path- 
way. In this regard, both a Ras-like protein 
and a MAPK-like enzyme that appear to 
function at the G,-M boundary have been 
described (19), and they both may partic- 
ipate in signaling pathways activated by 
Src family kinases. Alternatively, because 
activated Src is known to effect profound 
changes in the cytoskeleton, it is possible 
that Src family kinases are required for the 

. cell rounding that precedes mitosis. 
The Src family kinases apparently 

phosphorylate proteins whose action is re- 
quired for the onset of mitosis. One mitot- 
ic substrate of Src is Sam68 (8, 9). How- 
ever, Sam68 is unlikely to be the only 
critical substrate; it is predominantly a 
nuclear protein (I I )  and is therefore un- 
likely to associate with and become phos- 
phorylated by Src family kinases before 
nuclear envelope breakdown. Also, Sam68 
can associate with the SH3 domains of Src 
and Fyn (8, 9), yet high expression of the 
SH3 domain of Fyn-which might have 
been expected to inhibit association of 
Sam68 with active Src kinases-did not 
inhibit cell division. Because the SH2 do- 
main of Fyn inhibited cell division, it 
appears that Src family kinases may be 
recruited to protein complexes through 
interactions with tyrosine-phosphorylated 
proteins. Such complexes could contain 
critical substrates. 
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detected by incubation with fluorescein-conjugat- 
ed goat antibody to rabbit IgG diluted 1 :I00 in 
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of nuclear pore proteins (79, diluted 1 :4WO in 
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Cells were seeded on cover slips, synchronized in 
G,, and microinjected wlh affinty-purified antibody 
orantibody that had been incubated with its cognate 
peptide; after 10 to 12 hours, antibody-posfve cells 
were visualized as described (Fig. 2). Anti-pl 10.1 
recognizes the last 15 amino acids of the p l  10 cat- 
alytic subunit of bovine brain PI-3Ka (13); anti-src.1 
recognizes amino acids 40 to 58 in the unique do- 
main of the mouse c-Src sequence (3); and anti- 
PLC-yl was raised against the GST fusion protein 
bearing both SH2 domains of human PLC-71. Anti- 
bodies were affinity-pulified and concentrated up to 
3 mg/ml as described (5). 
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