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Late Glacial Climate Record of Midwestern 
United States from the Hydrogen Isotope Ratio 

of Lake Organic Matter 
R. V. Krishnamurthy, K. A. Syrup, M. Baskaran, A. Long 

A hydrogen isotope time series obtained from an analysis of organic matter extracted from 
a lake core in Kalamazoo, southwestern Michigan, reveals four distinct isotope stages 
within the last 12,000 years that can be interpreted in terms of oscillations between cold 
and warm, dry climates. The most dramatic are a cold phase between 12,000 and 9000 
years before present (B.P.), a warm, dry period between 8500 and 2000 years B.P., a cold 
period between 2000 and 1000 years B.P., and a warming trend since 1000 years B.P. 
The warming trend of the last 1000 years is comparable in magnitude to the mid-Holocene 
warm phase. 

T h e  stable hydrogen isotope composition 
[expressed as SD values ( I ) ]  of plant mate- 
rials has bee11 used to Infer paleocliinatlc 
conditions (2).  These studies rely on the 
demonstrable link between the  SD of a 
single plant component, namely the  car- 
bon-bound hydrogen of cellulose, and the  
SD of water used by the  plants during their 
growth. Because the water used by plants is 
mostly the local meteoric water and the SD 
of local meteoric water correlates with local 
mean annual temperature, the  SD of cellu- 
lose can be translated into cllmatlc factors. 
In many instances, however, even young 
sedimentary systems contain negligible 
amounts of plant remains that can be iso- 
lated for this type of study. Extractable sed- 
imentary organic matter, o n  the other 
hand, can be found 111 a wide variety of 
geologic environments. 

Here we report the  paleoclimatic infor- 
mation obtained froin organlc matter (kero- 
gen) extracted from a lake core from south- 
western Michigan, analyzed for SD by di- 

R. V. Kr~shnamurthy and K. A Syrup, Department of 
Geology, Western M~ch~gan Unlverslty, Kalamazoo, MI 
49008, USA 

gestion of the  sedlinents with hydrofluoric 
and hydrochloric acids (3). This procedure 
is essential to make sure that other hvdro- 
gen-containing phases, ~nostly inorganic 
minerals, are removed. W e  assume that (i)  
the kerogen 111 lake sediments originates 
from photosynthesizing aquatic plant bio- 
mass that grew in the  lake and iii) that the u , , 

source of hydrogen for these plants was the 
local meteoric water recharging the lake. If 
the  SD of kerogen does indeed contain 
climate information, the  scope of its appli- 
cabilitv is enormous because keroeen can 
commonly be extracted from a variety of 
sediments. 

A11 -4-in-long core was raised in 1993 
from Austin Lake in Kalamazoo (42.10°N, 
85.30°LV), southwestern Michigan (Fig. 1) .  
This lake is typical of the  several "kettle" 
lakes in the  region that were formed by the  
melting of a mass or masses of ice isolated 
from the glacier (4). A t  4.5 km" Austin 
Lake is a relatively large lake for this region 
and has extensive aquatic vegetation. T h e  
seditnents are relatively rich in organic car- 
bon (up to 20 weight % o n  a carbonate-free 
basis), the source of which must be vegeta- 
tion in the lake because the  lake is isolated 

M. Baskaran, Department of Mar~ne Sc~ences, Texas from other possible sources of organic 
A&M Unvers~ty, Gaveston, TX 77553-1 675, USA. 
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ly from dlrect precipitation and is a point of 
recharge for adjacent ground water. 

T h e  H/C ratio (Fig. 2) and the  SD values 
(Fig. 3) of the  kerogen samples as a function 
of age show that lack of signlflcant long- 
term trends in H/C and SD with age sup- 
ports the  contention that the  SD variations 

are not related to diagenesis (5). T h e  SD 
data can be subdivided into four phases 
(Table 1 and Fie. 3) .  - ,  

T h e  hydrogen isotope ratio of kerogen in 
lake sediments with substantial ~ r i i n a r v  
productivity reflects the hydrogen of plants 
that eventually form the source material for 
sedimentary organic matter. There is ample 
evidence that the hydrogen in plants is 
almost entirely derived from the source u2a- 
ter, the  local precipitation in most cases 
(2) .  In the present case, we examined if t h ~ s  
was true for these lake samples by compar- 
Ing the SD of kerogen extracted from the  
 to^ of the  core with the  SD of envlronmen- 
tal water. T h e  SD of kerogen extracted from 
the  surface sample from the top of the  core 
was -SO per mil. For the  hydrogen isotope 
fractionation between the nonexchange- 
able hvdroeen in cellulose extracted from , " 

aquatic plants and their environmental wa- 
ter, the SD of the  environtnental water out 
of which the lake kerogen was generated 
should be around - 54 per mil (6). T h e  one 

Fig. 1. Map shovd~ng Kalamazoo In southwest 
Mlchgan, where Aust~n Lake was cored 
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analysls of lake water collected on a windy, 
spring day gave a more positive value than 
this (-40 per mil), whereas the  nlean of 
several local ground-water samples gave a 
value of -53 5 4 per mil. T h e  ground 
waters probably represent a better average 
of the lake water because, as mentioned 
earlier, the  adjacent ground waters are re- 
charged by water from this lake. Moreover, 
the weighted annual mean SD of precipita- 
tion in Kalamazoo is -57 Der mil, o n  the 

latitudes varies by 4 to 6 per mll "C-' (8). 
Our  own ineasurements of SD in precipita- 
tion in Kalatnazoo, covering one year's sam- 
ples, gave a temperature coefficient of 4.5 
per mil "CP1,  a reasonable value in view of 
the shorter sampling interval. T h e  temper- 
ature coefficient for the  nonexchangeable 
hydrogen in cellulose is similar to the long- 
term precipitation values at -7 to 8 per mil 
"C-I (2) .  If these are extrapolated to our 
results, the  -32 per mil increase in the  SD 
at  8500 years B.P. (Fig. 3 )  would correspond 
to a temperature increase in the region of 
-5" to 7°C. Likewise, the decrease by -54 
per mil around -2000 years B.P. would 
correspond to a cooling by -7" to 12°C. 
T h e  subsequent increase by -25 per mil 
around 1200 years B.P. suggests a n  increase 
in temperature by -4" to 6°C. Sitnilarly, 
Dorale e t  al. (9)  used oxygen isotope ratlos 
of s~elecjtheins from the Cold Water Cave 

is likelv a n  overestimate. T h e  SD of cellu- 
lose anh of kerogen could reflect the influ- 
ence of atinospheric processes that affect 
the SD of local precipitation. T h e  annual 
SD distribution in Kalamazoo precipitation 
(Fig. 4 )  shows a strong seasonality: summer 
precipitation is isotopically heavier than 
winter precipitation because of a combina- 
tion of the influences of temnerature and 
the history of the air masses. Today inois- 
ture in the study area originates principally 
from warm air masses from the  Gulf of 
Mexico, maritime air masses from the Pa- 
cific and Atlantic, and cold, dry air inasses 
from the Canadian Arctic (13).  It is likely 
that superimposed o n  the  temperature in- 
crease during the mid-Holocene there were 
changes in the relative importance of vari- 
ous air masses bringing precipitation tcj this 
region. Rain derived from air masses origi- 
natlng in the  Gulf of Mexico, which make 
up a t  least 60% of the air flow during the  
summer months, are also isotopically high 
(SD = -3 5 per mil) (7). Therefore, if the 
mid-Holocene warm episode was character- 
ized by longer summers associated \v' ' ~ t l  1 an  
intensified water-vanor transnort from the 

basis of a n  analysis of every individual pre- 
cipitation that fell in the area for the year 
between June 1992 and June 1993 (7) (Fig. 
4).  T h e  one measurement of actual lake 
water may have been o n  a sample subjected 
to excessive surficial evaporation. 

A relation between the SD of kerogen 
and the SD of local meteoric water, similar 
to that between the SD of cellulose of 
aquatic plants and local meteoric water, is 
indeed intriguing because in the latter case in northeast Iowa to infer that there was a 

rapid wartning of 3°C around 5900 years 
B.P. and a cooling by 4°C at  3600 years B.P. 
Prairie was dominant in central Iowa be- 
tween 8000 to 3000 years B.P., and the  
clilnate was drier during this time than it is 
in the present (10).  Other  evidence for 
warm, drv climates in Ohio. Indiana, Min- 

the comparison was made o n  the basis of 
the  carbon-bound hvdroeen of a single , u - 
component, namely cellulose. There are 
two possible explanations: ( i )  T h e  SD of 
HF-HC1 residue annroxiillates the SD of 

L L 

cellulose carbon-bound hydrogen, and in- 
terference from any exchangeable hydrogen 
in the residue, perhaps up to 1096, is miini- 
tnized by the identical experimental condi- 
tions of extraction of the  residues. or iii) it 

Gulf of Mexico and shorter, drier winters, a 
simple mechanism is available to produce 
local meteoric water and thus organic illatter 
in the lake with higher SD values (10. 14). 

Feng and Epstein, s t ~ ~ d ~ i n g  SD values 

nesota, s o u t h  Dakota, and other interior 
northwestern Atnerican regions during the  
mid-Holocene comes from palynological 
studies (1 1) .  T h e  cold clilnate that follou,ed 
the  mid-Holocene warm ohase was also in- 

, , ,  

is a fortuitous coincidence that deserves 
more detailed studies from this and other 

from a bristlecone pine, argue that except 
for a brief warming around 7000 years B.P., 
the  reglon around the White  Mountains In lakes. Given the close relation between SD 

in the  kerogen and SD of local meteoric 
water, the variations observed downcore 

ferred in sotne other regions of the country, 
for example, Minnesota and the  White  
Mountains in New Hampshire (1 2).  

Table 1. Subd~v~s~on of the hydrogen sotope 
record In Aust~n Lake organlc matter Into four 
stages and the Inferred clmat~c cond~t~ons 

can be translated Into temporal variations 
in the SD of local meteoric water. T h e  

T h e  tnagnitude of temperature changes 
deduced from our hydrogen isotope record 

mean annual SD of precipitation in mid- 

Stage Tlme interval Avg. 6D Inferred 
(years B.P.) (per mil) climate 

1 12,000-8500 1 0 8  Cold 
2 8500-2000 7 6  Warm, 

d r~ 
3 2000-1 200 1 3 0  Cold 
4 1200-present - 105 Warm~ng 

trend 

(cold) 

-'.-;i 
Phase 2 
(warm, dry) 

: i\ 
-801 -57 per m i  - i 

Phase 1 
(cold) 

-150 
- 

-120 -90 -60 

Cold AMOW (per mil) 
Fig. 3. The 6D values of kerogen plotted against 
time. The arrows indicate the direction of 6D 
change during warmer or cooler cl~mates. 

H'Ckerogen 

Fig. 2. The HIC ratlo versus age of kerogen in 
Aust~n Lake sediments. 

Fig. 4. The we~ghted mean 6D values of monthly 
precipitation in Kalamazoo based on analysis of 1 
year's collect~on (June 1992 through June 1993). 
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California has been cooling (15).  Curiously, 
their isotope record also points to cooling 
by -7"C, a l t h o ~ ~ g h  they caution that the  
a c t ~ ~ a l  temperature effect is close to 3 O ,  the 
rest being an  effect related to variations in 
the history of air masses. 

If valid, the  contrasting trends in clirnate 
between the rnidwestern and western Unit-  
ed States call be reconciled by exanlilling 
present-day weather systems and how cli- 
mate is influenced by the  position of the jet 
stream. Whenever the  midwestern regions 
lie o n  a high-pressure ridge, drawing in 
\trarm moisture from the Gulf of Mexico and 
blocking off the dry, cool continental air 
masses, the western regions experience 

inilder temperatures, and vice versa. There- 
fore, if the  mid-Holocene period was 
marked by sustained intrusion of the  Gulf of 
Mexico air inass into the  inidnestern re- 
gion, contrasting cliinatic conditions bvithin 
the continental Unlted States are indeed 
conceivable. 
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Requirement for Src Family Protein Tyrosine 
Kinases in G, for Fibroblast Cell Division 

Serge Roche," Stefano Fumagalli, Sara A. Courtneidget$ 

The protein tyrosine kinase c-Src is transiently activated at the transition from the G, 
phase to mitosis in the cell cycle of mammalian fibroblasts. Fyn and Yes, the other 
members of the Src family present in fibroblasts, were also found to be activated at 
mitosis. In cells microinjected with a neutralizing antibody specific for Src, Fyn, and Yes 
(anti-cst.1) during G,, cell division was inhibited by 75 percent. The block occurred 
before nuclear envelope breakdown. Antibodies specific for phosphatidylinositol-3 
kinase a and phospholipase C-yl had no effect. Microinjection of the Src homology 
2 (SH2) domain of Fyn was also inhibitory. Functional redundancy between members 
of the Src family was observed; a Src-specific antibody had no effect in NIH 3T3 cells 
but inhibited cell division in fibroblasts in which the only functional Src family kinase 
was Src itself. Thus, Src family kinases and proteins associating with their SH2 domains 
are required for entry into mitosis. 

T h e  nroto-oncopene nroduct cSrc and re- ,~, 

lated enzymes are activated during t h e  tran- 
sition from the Go to the G, phase of the 
cell cvcle in resnonse to some growth fac- 
tors ( i-3), and lkcroinjection s h i e s  have 
shown that thev are necessarv for some 
growth factors to transmit mitogenic signals 
(4 ,  5) .  c-Src is also activated as fibroblasts 
enter nlitosis 16). Mitotic activation of c- ~, 

Src involves NH,-terminal serine and 
threonine phosphorylations-probably by 
the  cyclin-dependent protein kinase 
Cdc2-concomitant with a net  dephospho- 
rylation of Tyr5", the  regulatory site (7). A 
mitotic substrate of Src, known as p68 or 
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Sa11168, associates with the Src homology 3 
(SH3) and SH2 domains of Src (8-10). 
Sam68 is a heterogenous ribon~lclear pro- 
tein 11 1 ) and lnav have a function in R N A  , , 

transport, stabiliiy, or splicing. T h e  fact 
that mitotic substrates of Src can be detect- 
ed suggests that signal transduction path- 
ways involving tyrosine kinases may func- 
tion in mitosis. Here, we address whether 
the Src kinases are required for cell division. 

N I H  3T3 cells express three nlembers of 
the  Src family: Src, Fyn, and Yes. T o  deter- 
mine whether Fyn and Yes, like Src, be- 
come activated during mitosis, we measured 
their activities in N I H  3T3 cells overex- 
pressing these enzymes, both during inter- 
nhase and in cells blocked in initosis bv 
nocodazole treatment (Fig. 1). After immu- 
noprecipitation of Fyn or Yes with antibod- 
ies specific to  each proteln, both autophos- 
phorylation and phosphorylation of enolase 
were assessed. W e  observed activation of 
these enzylnes that was three to flve tiines 
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