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Decreased Muscarinic Receptor Binding 
in the Arcuate Nucleus in 

Sudden Infant Death Syndrome 
Hannah C. Kinney,* James J. Filiano,i- Lynn A. Sleeper, 

Frederick Mandell, Marie Valdes-Dapena, W. Frost White 

Muscarinic cholinergic activity in the human arcuate nucleus at the ventral medullary 
surface is postulated to be involved in cardiopulmonary control. A significant decrease 
in [3H]quinuclidinyl benzilate binding to muscarinic receptors in the arcuate nucleus is now 
shown to occur in sudden infant death syndrome (SIDS) infants, compared to infants dying 
acutely of known causes. In infants with chronic oxygenation abnormalities, binding is low 
in other nuclei, as well as in the arcuate nucleus. The binding deficit in the arcuate nucleus 
of SIDS infants might contribute to a failure of responses to cardiopulmonary challenges 
during sleep. 

Sutlden infant death syndrolne is the lead- 
ing cause of postneonatal infant death in 
the Unlted States. SIDS is defined as the 
sudden death of an infant under 1 year of 
age that remains ~~nexplalned after a thor- 
ough case investigation, incl~lding perfor- 
mance of a complete autopsy, exainlnation 
of the death scene, and review of the clin- 
ical hlstory ( I ) .  The syndrome is temporally 
associated with sleep periods, resulting m 
the premise that SIDS occurs d~lring sleep 
or during tra~lsitiolls between sleep and 
waking. Recent epidemiologic data have 
shown a positive association hetween prone 
sleeping position and SIDS incidence, and 
decreased SIDS rates have been reported in 
countries that have initiated intervention 
programs advocating a s ~ ~ p i n e  sleeping po- 
sition (2) .  The mechanism for the associa- 
tion hetween decreased prone prevalence 
and decreased rlsk for SIDS is unknown, hut 

an interaction possibly exists hetween 
prone position and ilnpalred cardioventila- 
tory control, particularly iinpaired ventila- 
tory and arousal responsiveness (3). 

We 11ypothesi:e that SIDS, or a subset of 
SIDS, is associated with a deficiency in mus- 
carinic cholinergic receptor (mAChR) bind- 
ing in the arcuate n~~cleus  of the ventral 
surface of the medulla (ventral lnedullary 
surface, VhtS), which results in an iinpaired 
respoilse tto hypercarbia or asphyxia during 
sleep and sudden death. In animals, the pre- 
cise locatloll of the chemosensors 1s debated, 
hut there is substantial evidence that the 
\'MS participates in the ventilatory response 
to carbon dioxide (CO?) and hydrogen ion, 
cardioventilatory co~~pling,  and pressor re- 
sponses (4). VhtS cells are intimately asso- 
ciated with ventrolateral neurons of the 
hrainstem that integrate ventilatory, pressor, 
and defense responses (5, 6).  The preclse 
function or functions of the human arcuate 
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ing in adults exposed to hypercarbia in 
which CO, responsivity is localized to the 
region of the arcuate nucleus (9), and by a 
case report of an infant with congenital cen- 
tral hypoventilation syndrome and absence 
of the arcuate nucleus at autopsy (10). Ace- 
tylcholine has been implicated experimen- 
tally in mediating the ventilatory response to 
CO, and hydrogen ion via mAChRs at the 
VMS (1 1, 12), and mAChR binding has 
been shown to localize extensivelv to the 
human arcuate nucleus, the only nucleus 
along the VMS in humans with appreciable 
muscarinic binding (1 3,  14). In the present 
study, we have used tissue receptor autora- 
diography to test the hypothesis that the 
binding of the muscarinic antagonist 
[3H]quinuclidinyl benzilate (['HIQNB) is 
deficient (decreased) in the arcuate nucleus 
in SIDS infants. 

Brainstems from a total of 77 cases were 
analyzed: 45 SIDS, 14 acute controls, and 
18 infants in a chronic group (15). The 
acute controls were infants who were com- 
pletely well or had recognized illnesses prior 
to death and who died suddenly and unex- 
pectedly; a complete autopsy established a 
cause of death (1 6). The chronic group was 
composed of infants with a history of chron- 
ic or repetitive hypoxemia from cardiac, 
pulmonary, or central breathing disorders 
(17). The purpose of the analysis of the 
chronic group with oxygenation or breath- 
ing disorders was to address the possibility 
that the putative mAChR binding defect in 
the arcuate nucleus in SIDS infants is not 
specific, but rather reflects an effect of hy- 
~oxia-ischemia. Com~arison of the SIDS 
and acute control groups showed no signif- 
icant differences between mean eestational - 
age, birth weight, and Apgar scores, or be- 
tween rates of complications of pregnancy, 

labor, or postnatal course, oxygen use in the We assessed ['HIQNB binding to 
delivery room, or history of an apparent mAChRs with quantitative tissue receptor 
life-threatening event ( 18). autoradiography (Fig. 1) (1 3,  19, 20). QNB 

Table 1. Age-adjusted muscarinic binding means 5 SEM (fmol/mg tissue) for 17 nuclei. Analysis of 
covariance (ANCOVA) was used to examine differences in binding by diagnosis, adjusted for postcon- 
ceptional age (the covariate) (24). Postmortem interval was not used as an additional covariate because, 
although it differed slightly on average by diagnosis, it was not significantly correlated with [3H]QNB 
binding in this data set. When the relation between age and binding was similar for the three groups, 
age-adjusted mean binding levels were estimated for the three groups on the basis of the mean age of the 
entire sample (24). When the ANCOVA P value for case diagnosis was less than 0.05, signifying 
differences in mean binding among the three groups, pairwise comparisons of the age-adjusted means 
were conducted. The number of samples is indicated in parentheses. n., nucleus; Bands, paramedian 
bands in rostra1 pontine reticular formation (13); IPN, interpeduncular nucleus. 

Site SIDS Acute Chronic P 
(three-group) 

Arcuate n. 1102 6 (44) 150 2 12 (14) 111 2 11 (18) 0.01 2' 
Basis pontis 276 2 10 (43) 275 2 18 (14) 234 5 18 (16) 0.138 
Inferior olive 70 5 4 (43) 6 8 5 7  (13) 6 4 2 6  (18) 0.695 
Hypoglossal n. 314 2 13 (41) 295 5 24 (1 2) 224 2 22 (1 5) 0.003t 
n. Tractus 1802 8 (41) 161 2 15 (12) 152 5 12 (17) 0.432 

solitarii 
n. Centralis 138 5 4 (44) 1255 7 (14) 1402 7 (18) 0.244 
n. Giganto- 137 2 5 (41) 1 2 7 2 9  (11) 1325 7 (18) 0.559 

cellularis 
n. Paragigan- 113 5 4 (39) 1095 7 (11) 1 0 9 2 6  (18) 0.792 

tocellularis 
n. Parabrachi- 147 2 7 (22) 1562 17 (4) 135 2 13 (9) 0.605 

alis medialis 
n. Parabrachi- 125 2 5 (35) 1292 9 (10) 1 1 6 2 9  (13) 0.571 

alis lateralis 
n. Pontis oralis 145 2 5 (34) 1 3 9 2 9  (12) 1 2 7 5 9  (14) 0.210 
Locus coeru- 155 5 6 (31) 163 2 11 (10) 146 2 10 (14) 0.553 

leus 
Bands 205 5 8 (34) 213 5 13 (11) 1552 14(11) 0.008$ 
I PN 276 2 13 (31) 251 2 21 (12) 245 5 25 (9) 0.385 
n. Cuneiforrnis 161 2 6  (24) 1 5 8 5 9  (13) 161 2 lO(10) 0.954 
n. Raphe 1622 9 (21) 153 2 13 (10) 1602 17 (6) 0.863 

dorsalis 
Inferior 2305 13 (17) 231 2 18 (9) 242 2 20 (8) 0.874 

colliculus 

'SIDS differ from acute controls (P = 0.003) and chronic groups dier from acute controls (P = 0.026). Raw means 2 
SEM: SIDS, 110 + 6 fmoVmg tissue; acute, 153 + 13 fmoVmg tissue; chronic 108 + 10 fmovmg. tchronics 
differ from SIDS (P < 0.001) and chronics differ from acute (P = 0.034). SChronics differ from SIDS (P = 0.003) and 
chronics differ from acute (P = 0.006). 

Fig. 1. The PH]QNB binding procedure used in the present study for tissue arcuate nucleus; CEN, nucleus centralis; CUL, nucleus cuneatus lateralis; DMX, 
receptor autoradiography was based on methods developed in experimental dorsal motor nucleus of the vagus; DO, dorsal accessory olive; ICP, inferior 
animals (19) and applied in human postmortem pediatric brain tissues (13, 14, cerebellar peduncle; MO, medial accessory olive; nXII, hypoglossal nucleus; 
20). (A) Autoradiogram of representative level of the medulla. The arcuate nSPvc, nucleus of the spinal trigeminal nerve, pars caudalis; nTS, nucleus 
nucleus is located along the ventral surface, overlying the pyramid. (B) Color- tractus solitarii; PO, principal inferior olive; PYR, pyramid; SUB, nucleus subtri- 
coded image of specific activity (fmoVmg tissue) in same section. The white geminalis; VE, vestibular nucleus. 
arrows point to the arcuate nucleus. (C) Anatomic boundaries of nuclei. ARC, 
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is a potent antagonist that blnds nonspecifi- 
cally to all of the pharmacologically defined 
rnAChRs and to the hunlan m l - 4  subtypes 
(13). W e  analyzed mean rnuscarinic bind- 
ing In each of the 17 nuclel (Table 1) .  W e  
also analyzed the ratio of nluscarinic blnd- 
Ing in  each of the  17 nuclei to that in  four 
sltes: (i)  basis pontis, (ii) inferior olive, (iil) 
hypoglossal nucleus, and (iv) nucleus gigan- 
tocellularls (Table 2) .  T h e  ratio analyses 
were used to correct for overall variation in 
binding ainong cases. T h e  four nuclei were 
chosen because ( i )  the basls pontis (cere- 
bellar relay) is a region that is not  directly 
related to autonomic or ventilatory control 
and 1s one of two sites with the highest 
[jH]QNB binding In the infant brainstem; 
(ii) the hypoglossal nucleus (upper airway 
control) is the  other site of highest 
[IHIQNB binding in the  infant brainstern; 
(iii) the inferior olive (cerebellar relay) is 
the nucleus with the  lowest n lAChR bind- 
ing in all cases; and (iv) the  nucleus gigan- 
tocellularis (reticular formation) has an  in- 
ternledlate level of binding. 

Of the 17 regions analyzed throughout 
the brainstem, the arcuate nucleus was the 
only region in whlch there was a significant 
difference in age-adjusted mean binding be- 
tween the SIDS and acute control groups 
(Fig. 2 and Table 1).  T h e  differences in 
rnAChR binding remained significant after 
adjustlnent for postnlorteln interval (three- 
group, P = 0.016; SIDS versus acute, P = 

0.005). T h e  age-adjusted mean binding for 
the arcuate nucleus was sinlilar for the SIDS 
and chronic groups, and like the SIDS group, 
was significantly different from that of acute 
controls (Table 1). This observation raised 
the possibility that decreased mAChR bind- 
ing in the arcuate nucleus in the SIDS group 
was secondary to oxygenation or breathing 
abnorn~alities. However, in contrast to the  
specific decrease in rnhChR binding in the 
arcuate nucleus in the SIDS group, the 
chronic group had significantly decreased 
binding compared with acute controls in 
three brainstem nuclei: the arcuate nucleus, 
the hypoglossal nucleus, and a subdivision of 
the rostra1 pontine reticular formation (para- 
median ~nuscarinic bands). 

In  three of the ratio analyses (:nucleus 
gigantocellularis; :hypoglossal nucleus; :infe- 
rior olive), mean age-adjusted binding in the 
arcuate nucleus differed significantly among 
the three groups (three-group: P = 0.013, P 
< 0.001, P = 0.033, respectively). In con- 
trast, the basis pontis ratio analysis revealed 
a significant age-by-diagnosis interaction (P 
= 0.043); the correlation between age and 
binding in the chronic group differed from 
the correlation observed for the SIDS and 
acute groups. Nevertheless, in this ratio anal- 
ysis, as well as in the other three, the SIDS 
group had significantly lower mean binding 
than the acute control group (Table 2). 

Table 2. Age-adjusted mean mAChR binding of SIDS and control groups. Postconceptional age- 
adjusted mean i- SEM are shown. The ratio analyses were used to correct for overall variation in binding 
among cases. the ratio of the binding of each site to the binding of the basis pontis. nucleus gigantocel- 
lularis. hypoglossa nucleus, and inferior olive was analyzed. with these four nuclei sewing as internal 
standards. The age-adjusted means of the untransformed ratio measurements are presented for ease of 
interpretation, along with P values from the log-transformed analyses. The ratio values were og-trans- 
formed to meet normality assumptions of the regression model Asterisk denotes age-adlusted means for 
ARCIBP based on a submodel that excludes the chronic group, due to a significant interaction with age 
(mAChR binding of the chronic group decreases with age; binding of SIDS and acute controls does not 
vary with age). The number of samples is indicated in parentheses. ARC. arcuate nucleus: BP. basis 
pontis. GC, nucleus gigantocellularis; HN. hypoglossal nucleus: 0 ,  inferior olive. 

P (SIDS P (chronic 
Ratio SDS Acute Chronic versus versus 

acute) acute) 

ARCIBP 0.42 i 0 03 (43) 0.56 i 0.05 (14) (16) 0.012 
ARCIGC 0.84 i- 0 31 (41) 1.26 i- 0 44 (1 1) 0.79 i- 0 29 (1 7) 0.003 0.035 
ARCIHN 0.36 i 0 13 (41) 0.57 i- 0 25 (1 2) 0 51 i- 0 16 (1 4) 0.002 0.777 
ARCIIO 1.63 i- 0.54 (43) 2.34 i- 1 11 (1 3) 1 73 i- 0 64 (1 7) 0.010 0.137 

There was also an  age-by-diagnosis interac- 
tion in the binding ratios for the nucleus 

u 

raphe dorsalis to the hypoglossal nucleus and 
to the nucleus gigantocellularis. T h e  binding 
ratio in the  acute group decreased sign~fi- 
cantly with age (0.03 to  0.04 inlo1 of tissue 
per ~nllligrarn per week), whereas the bind- 
ing ratio in the SIDS group increased slightly 
with age (0.01 fnlol of tissue per milligram 
per week). Therefore, the nlean difference in 
binding ratios between the SIDS and acute - 
control groups 1s age-dependent. T h e  nucle- 
11s raohe dorsalls was not a focus of our 
original research, and the significance of 
these findings is unclear and requires further 
study. A t  several sites, group differences in 
binding ratios with the basis pontis and nu- 
cleus gigantocellularis depended o n  age, but 
in each instance this was due to the chronic 
group differing from the SIDS and acute 
control groups, which were not significantly 
different from each other. 

W e  found several significant chronic 
versus acute control differences in mAChR 
binding ratios. Compared to the  acute 
group, the  chronic group had significantly 
lower nucleus gigantocellularis binding ra- 
tios at three sites: the arcuate nucleus, hv- 
poglossal nucleus, and paramedian bands, 
the  same sites that had sienificantlv de- 
creased mean binding v a l u e s r ~ h e  hyp&los- 
sal nucleus ratio analvses revealed five other 
sites where the c h r o k c  group ratios differed 
sienificantlv from the  acute controls: nucle- " 

us tractus solitarii, nucleus centralis, nucle- 
us gigantocellularis, nucleus paragigantocel- 
lularis lateralis, and nucleus cuneiformis. 
Although the underlying cause or clinical 
significance of these abnormalities in the 
chronic group is unknown, the comnlon 
feature of oxygenation or breathing abnor- 
malities suggest that hvpoxia-ischemia or 
related complications may play a key patho- 
genetic role. 

W e  observed a decrease In ['HIQNB 
blndlng to nlAChRs 111 the  arcuate nucleus 

of a group of SIDS infants compared to  
infants dying acutely of known causes. LVe 
also observed that the  age-adjusted nlean 
['HIQNB bindillg to lnAChRs in  several 
nuclei (including the  arcuate nucleus) was 
decreased in  a chronic group w ~ t h  oxygen- 
ation and breathing abnormalities com- 
pared to SIDS and acute controls. More- 
over, the only binding ratios with a signif- 
icant effect for SIDS versus acute controls 
were those involving the arcuate nucleus. " 
Together, these findings suggest that 
lllAChR binding is nonspecifically lowered 
by hypoxia-ischemia or related factors a t  
sonle point or points in the chronically 111 

infant's clinical course, whereas it is low in 
the arcuate nucleus only in  the  SIDS infant. 
Experinlental studies in aninlals support the 
idea that hypoxia-ischemia decreases radio- 
ligand bindillg t c  brain rnAChRs (21 ). O n e  
hypothesis is that the arcuate nucleus is 
soecificallv affected in SIDS infants for as 
yet ~ ~ n k n c > w n  reasons. Alternatively, the ar- 
cuate nucleus nlay be exquisitely sensitive 
to hypoxia-ischemia, resulting in  ~ t s  being 
the  only nucleus affected 111 the presumably 
lnllder hypoxic-ischemic events prior to 
death in  the  SIDS cases con l~a red  to the  
more severe episodes in the chronic group. 

A simple division based o n  [IHIQNB 
binding in the arcuate nucleus does not 
exist between the  SIDS and acute control 
groups, despite a statistically significant dif- 
ference between the two groups, and the 
lower 20th percentile of nlAChR binding 
(<75 frnol of tissue per milligram) anlong 
the  SIDS and acute controls being com- 
prised entirely of SIDS cases. Some overlap 
and scatter among cases is expected owing 
to biologic variability. Overlap is also ex- 
oected because of ootential misclassifica- 
tion of cases. It is difficult to classify cases as 
SIDS or 11011-SIDS, and classification in- 
volves judgment decisions. O n  occasion, 
SIDS cases with n l ~ l d  in te rc~~r ren t  illness 
lnav be nlisclassified as acute controls. A n -  
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Fig. 2. Scatterplot of raw data and estimated 
regresson Ines (model R" 0.146; acute con- 
trols Intercept = 125.83. SIDS ntercept = 85.27, 
age slope = 0.49 fmol of tlssue per mlllgram per 
week) of mean [3H]QNB blnding to mAChRs in the 
arcuate nucleus for SIDS cases ( s o d  trangles) 
and acute controls (open circles) by postconcep- 
tua age. Each symbol represents one case. The 
age-adjusted mean blndlng level of the SIDS 
group is sgnifcanty lower than that of the acute 
control group. 

other posslblllty for the  olerlap between 
SIDS and acute contlols 1s that SIDS 1s a 
heterogeneous group of disorders, in which 
one group is associated with decreased mus- . 
carinic binding in the  arcuate nucleus. Fi- 
nally, neurotranst-ilitters and neuromodula- 
tors other than acetylcholine can affect 
breathing; therefore, although it is possible 
that acetylcholine is a crucial neurotrans- 
mitter, these results do  not  sl~o\v that other 
agents are uninlportant or without effect. 

T h e  mechanisms resulting in deficient 
rnAChR binding in the  arcuate nucleus of 
the SIDS infants is unknown. In  a baseline 
developmental study (13) ,  we found that 
['HIQNB binding to mAChRs is consider- 
ably lower in the  arcuate nucleus a t  mid- 
gesiation and in the  perinatal period than 
in  the infant (postnatal) period. Comparing 
the data of the current study with the base- 
line developmental study ( 1  3), the values of 
rnAChR binding in  the  SIDS group are 
more "fetal-like" than "infant-like." These 
combined data suggest the  possibility that 
there is a disturbance in development of 
mAChR bindillg in  the arcuate nucleus of 
the  SIDS infants. 

T h e  abnormality we now describe in  the  
arcuate nucleus in SIDS infants does not 
necessarily point to any single cause of 
SIDS, particularly because the  function of 
the  arcuate nucleus in human cardioresnl- 
ratory control is uncertain. Moreover, given 
the  stnall difference (27%) in receptor 
binding between the  SIDS and acute con- 

trols, the decreased nlAChR binding may 
be an  insensitive marker of a more funda- 
nlental mechanism, rather than the  cause of 
cardiorespiratory dysfi~nction. T h e  evidence 
in thls report is nlost consistent w ~ t h  the 
conclusion that a deflclency of mAChR 
binding in the arcuate nucleus is associated 
1 ~ 1 t h  an  increase in the  probability of death 
from SIDS or from chronic disorders of 
ventilation or oxygenation. An experimen- 
tal model will be necessary to determine 
~ v l ~ e t h e r  this defect 1s causally linked to 
SIDS, directly or indirectly. 

If t he  deficiencv of m A C h R  bindine in 
the  arcuate nucle'us of SIDS infants is 
causally linked, the  precise pathophysio- 
logical mechanism resulting in  sudden 
death  1s unkno~vn .  Nevertheless, evidence 
from experimental animals supports a n  
illlportant role for acetylcholine in  regu- 
lating central chernoreception and venti-  
latory drive through its interactlons with 
11lAChRs (1 1 ,  12) .  Direct application of 
cholinergic agonists to  the  VXlS stimu- 
lates ventilation, whereas application of 
antagonists results in decreased ventila- 
t ion and apnea (1 1 ,  12) .  Moreover, appli- 
cation of the  lllAChR antagonist atropine 
to  the  cat VhIS markedlv decreases the  
response to  hypercarbia, suggesting that  
lllAChRs accessible to  topical application 
mediate respiratory responses to C 0 2  (1 1 ). 
T h e  mAChR may be the  chetnoreceptor 
itself (1 1 )  or, alternatively, may be located 
o n  cells or cell processes involved in  che- 
rnoreflex pathways (1 1 ) .  A deficiency of 
m A C h R  binding in the  VMS cell popula- 
tions could result in a n  impaired response 
to a life-threatening challenge of hyper- 
carbia or asphyxia because of decreased 
nulllber of receptors or binding affinity to 
acetrlcholine (or both) .  

T h e  question arises as to the  nature of 
the  life-threatening challenge in SIDS in- 
fants. Although the precise circunlstances 
are unknown, the nlarked decreases in SIDS 
rates in countries with programs advocating 
a challge from prone to supine sleeping 
position (2)  support the  hypothesis that 
prone sleeping is causally related to 111- 

creased SIDS rates. Prone sleeping is asso- 
ciated with spontaneous face-down sleeping 
position in infants (22).  T h e  face-down 
position is associated with rebreathing ex- 
haled gases and increased end-tidal COL in 
normal infants (22).  This position may also 
result in upper airway obstruction, either by 
retropositioning the nlandible and occlud- 
ing the  pharynx or by compressing the  nose 
directly (22).  W e  suggest that a normal 
infant's nervous system detects progressive 
hypercarbia and asphyxia and responds by 
arousal and a series of orotective reflexes to 
ensure airway patency, whereas SIDS in- 
fants with a VMS defect do not oerfortn 
these protective reflexes. 
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