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Synchrony and Causal Relations Between 
Permian-Triassic Boundary Crises and 

Siberian Flood Volcanism 
Paul R. Renne," Zhang Zichao, Mark A. Richards, 

Michael T. Black,Wsish R. Basu 

The Permian-Triassic boundaky records the most severe mass extinctions in Earth's 
history. Siberian flood volcanism, the most profuse known such subaerial event, produced 
2 million to 3 million cubic kilometers of volcanic ejecta in approximately 1 million years 
or less. Analysis of 40Ar/39Ar data from two tuffs in southern China yielded a date of 250.0 
? 0.2 million years ago for the Permian-Triassic boundary, which is comparable to the 
inception of main stage Siberian flood volcanism at 250.0 i 0.3 million years ago. 
Volcanogenic sulfate aerosols and the dynamic effects of the Siberian plume likely con- 
tributed to environmental extrema that led to the mass extinctions. 

Continental  flood volcanism nroduced en- 
isodic outpourings of magma, chiefly basalt, 
whose volumes (up to 3.0 X lo6 km3) and 
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mean eruption rates [up to 3 km3/year sus- 
tained for -1 million years (My)] are sig- 
nificantly larger than those of volcanism in 
other geologic settings ( 1 ) .  Causal relations 
between flood volcanism and Inass extinc- 
tions have been postulated for more than a 
decade (2,  3), in part because of the appar- 
ent coincidence between the two most pro- 
found mass extinctions known (Permian- 
Triassic and Cretaceous-Tertiary) and two 
of the most extensive continental flood vol- 
canism events (Siberian and Deccan traps, 
respectively). Likely mechanisms of mass 
mortality (3-5) posed by flood basalts in- 
clude global cooling caused by sulfate aero- 
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sol accumulation and acid rain resulting 
from reduction and coalescence of sulfates. 

The Permian-Triassic (P-T) mass extinc- 
tions were the most catastrophic in the geo- 
logic record, with as many as 90% of marine 
species and 70% of terrestrial vertebrate fam- 
ilies dying out (6, 7) along with significant 
floral extinctions (8). Global circumstances 
attending the extinctions are not well under- 
stood. Oxidation of carbon and rapid influx of 
radiogenic strontium into the oceans most 
likely resulted from a major sea level drop 
(regression) that coincided with the extinc- 
tions (9, 10). These phenomena are consist- 
ent with short-term global cooling and ice cap 
expansion (1 1 ) and also with a pulse of acid 
rain, as has been inferred at the Cretaceous- 
Tertiary (K-T) boundary (12). Unlike the 
K-T boundary, no compelling evidence for a 
bolide impact at P-T time is known. Al- 
though several researchers have inferred a cor- 
relation between the P-T boundary and the 
Siberian traps (10, 1 1 , 13, 14), uncertainty in 
the age of the boundary has hindered confi- 
dence in the correlation. Here, we demon- 
strate that the two phenomena were synchro- 
nous within several hundred thousand years. 

The Siberian traps represent the most 
voluminous known continental flood vol- 
canism in Earth's history, with an original 
volume estimated at 2 x lo6 to 3 X lo6 
km3 distributed over 2.5 X lo6 km2 in 
central Siberia. The traps' volcanic suc- 
cession overlies Permian strata and is in 
turn overlaid by Triassic strata (15), al- 
though the biostratigraphy is based on 
sparse terrestrial faunas. The principal 
magmatic activity was of short duration 
(- 1 My) and occurred about 250 million 
years ago (Ma) (1 1,  13, 14, 16, 17). Al- 
though the dates reported by various 40Ar/ 
39Ar and U-Pb studies range from 243 to 
250 Ma, most of this range results from 
inconsistent use of standards for 40Ar/39Ar 
dating. Renne and Basu (13) reported an 
age of 248.4 2 0.3 Ma (20 errors here and 
throughout) for the inception of main- 
stage Siberian traps volcanism; this age 
was recalculated to 250.0 2 1.6 Ma (17) 
on the basis of astronomical calibration of 
the age of the Fish Canyon sanidine stan- 
dard (1 8). The recalculated age uncertain- 
ty is larger because it incorporates uncer- 
tainty in the standard's age (18), whereas 
the previous uncertainty did not reflect 
this consideration. 

The inception age of the Siberian traps 
(250.0 2 1.6 Ma) can be compared with the 
P-T boundary age (251.2 2 3.4 Ma) ob- 
tained by U-Pb ion microprobe analysis of 
zircons from a bentonitic tuff at the P-T 
boundary in the Meishan section in Zhejiang 
Province, southern China (1 9). On the basis 
of a critical value test, these two ages can be 
distinguished from each other at the 48% 
confidence level. The two dates differ by 1.2 

2 3.8 My (2u); thus, on the basis of these 
data, the P-T boundary could have preceded 
the beginning of Siberian volcanism by as 
much as 5.0 My or succeeded it by as much 
as 2.6 My at the 95% confidence level. 

To test more rigorously the relative ages 
of these two events, we used the 40Ar/39Ar 
method to date feldspars from tuffs at the 
P-T boundary in two different sections in 
southern China (Fig. 1). These sections are 
widely believed to contain the most strati- 
graphically complete P-T sections in the 
world. Sample C-2 consisted of sanidine 
grains (100 to 150 pm across) from a ben- 
tonite at the base of the Chinglung Forma- 
tion (Meishan section D), 5 cm above the 
paleontologically defined P-T boundary. 
This is the same bentonite from which 
previous dates of 25 1.2 2 3.4 Ma (by U-Pb 
analysis of zircons) (19), 255.7 k 0.4 Ma 
(by 40Ar/39Ar analysis of sanidine) (20), 
and 250 k 6 Ma (by Rb/Sr analysis of 
sanidine) (20) have been reported. Sam- 
ple GS-1 consisted of plagioclase grains 
(200 to 250 pm across) from a bentonite 
in the Shangsi section, approximately 5 
cm below the P-T boundary. 

Incremental-heating 40Ar/39Ar analysis 
(21 ) of the Meishan sanidine (C-2) yielded 
a plateau date (Fig. 2A) of 249.91 2 0.15 

Ma (internal error) with an external error 
of k1.52 Ma. The mean date obtained by 
individual total-fusion analyses (Fig. 3A) is 
249.62 Ma (20.30 Ma internal error; 
21.54 Ma external error). This date is 
slightly younger than the step-heating pla- 
teau date, presumably because of subtle al- 
terations whose effects are removed at low 
temperatures during step heating. Two sep- 
arate incremental-heating analyses (21) of 
the Shangsi plagioclase (GS-1) yielded a 
combined weighted mean plateau date (Fig. 
2, B and C)  of 250.04 2 0.36 Ma (internal 
error) with an external error of 21.13 Ma. 
The mean of individual grain total fusion 
dates (Fig. 3B) is 249.76 Ma (k0.69 Ma 
internal error: k1.66 Ma external error); . . 
this is slightly younger than the weighted 
mean plateau age derived by incremental 
heating, again presumably because of cryp- 
tic alteration effects. 

Because the two tuffs that yielded our 
samples are located just above and just be- 
low the P-T boundam and the dates we 
obtained from them aie analytically indis- 
tinguishable, we estimate the age of the 
boundary itself to be equal to the mean of 
the two plateau dates, or 249.98 2 0.20 Ma 
(internal error) with an external error of 
20.95 Ma. This date can be compared with 

Fig. 1. Stratigraphic po- 
sitions of the dated sam- 
ples (red arrows) in the 
Shangsi and Meishan 
sections. The index map 
shows the present-day 
locations of the sections 
and the inferred original 
extent of the Siberian 
traps (black). The inset 
shows locations of the 
two sections (red X's) 
and the Siberian traps in 
a Pangaea reconstruc- 
tion adapted from (10) at 
P-T time. Stratigraphy is 
based on (30) for the 
Shangsi section and on 
(19) and (31) for the Mei- 
shan section; in the strati- 
graphic columns, beds 
are numbered according 
to the original referenc- 
es, and colors (where 
shown) correspond to 
descriptions given in 
these references. 
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the Siberian traps on the basis of internal 
errors only, because uncertainty in the age 
of the fluence monitor is only a factor in 
deterlnillilng absolute age. Thus the P-T 
boundary followed the initiation of lnain 
stage Siberian traps volcanism by 0.02 ? 
0.36 My. A critical value test shows that 
these two dates can be distinguished at only 
the 6% confidence level. 

The low probability of age difference be- 
tween these two events strongly supports the 

Indeed, a short-lived volcanic winter, fol- 
lowed within several hundred thousand 

Such an ice sheet would lower the sea level 
globally, as in recent ice ages. Another plau- 
sible dynamic effect of the plume would be to 
induce rapid excursion of Earth's rotational 

years by greenhouse conditions, would f~11- 
lv explain the environmental extrelna that , 

caused the P-T mass extinctions. 
A conlplelnentary mechanism for the re- 

gression-transgression cycle centered on the 
P-T boundary involves the large-scale dy- 
nanlics of the starting plume head that 
caused the Siberian flood volcanism. As a 
plunle rises through the mantle, it causes an 
~ ~ p l i f t  of Earth's surface (23). The horizontal 
scale of this unlift is about 3000 km: this 

axis from its normal geographic position, po- 
tentially causing "true polar wandering" (26) 
as it ascended quickly through the upper man- 
tle. This could also have contributed to global 
clilnate disruption centered on the P-T 
boundary. 

A marked decrease in seawater "SrlR%r 
(to values 4 . 7 0 7 )  occurred inlrnediately be- 
fore the P-T boundary (9), as precipitously as 
the rapid rise at the boundary itself. Decreas- 
ing values of seawater "Sri"%r indicate an 

notion of a causal relation between them. 
Siberian flood volcanism, perhaps augment- 
ed by sulfates derived from evaporites of the 
Siberian platform, could have produced suf- 
ficient stratospheric sulfate aerosols for rapid 
global cooling to ensue ( 1  1 ). Resulting ice 
cap accumulation likely caused the dramatic 
marine regression, which in turn led to sub- 
aerial exposure of the continental shelves. 
This latter effect would account for the ubiq- 
uitous anonlalies in C ,  S, and Sr isotopes. 
Isotopically light C and S fro111 mant1e.de. 
rived CO, and SO, would also contribute to 

scale length is controlled lnainly by the 
dent11 of the lnantle rather than the size of 
the plulne head, as long as the plume head is 
less than -1500 km in diameter. This unlift 

- 
increasing mantle-derived component, as 
would be caused by an increase in the produc- 
tion of mid-ocean ridge (MOR) basalts. How- 
ever, heightened MOR activity at this time 
would produce a transgression rather than a 
regression; moreover, such activity appears 
~lnlikely because of the amalgamated nature of 
landlnasses cornposing Pangaea at this time. It 
appears possible instead that isotopically 

collapses as the plume approaches the sur- 
face, spreads horizontally, and begins to pro- 
duce large volumes of magma (24). Thus, the 
plurne head model predicts a regression (up- 
lift)-transgression (collapse) cycle of dura- 
tion -5 to 20 My, roughly centered in time 
on the flood basalt eruntions. 

the ohserved negatlve anolnalies in S13C and 
6''s (9).  Ice storage effects p l ~ ~ s  enhanced 
erosion of the continental crust could have 
~roduced the seawater ti1" enrichments ob- 

The celntral uplift over the plume head 
itself is expected to be -1 to 3 km, which in 

pri~nltive precursory Siberian rnagrnatism rep- 
resented in the Maimecha-Kotui subprovince, 
dated at 253.3 -+ 2.6 Ma (27), initiated the 
decline in seawater "Srlfi6Sr. 

the present case would have occurred over a 
-500-km radius centered on the Siberian 
traps (24). O n  a broader scale of 3000 to 4000 
km, dynamic flow calculations yield a regres- 
sion-transgression alnplit~~de on the order of 
10 to 50 In, but the detailed spatial-temporal 
nature of this signal depends on the size of the 
plume and the detailed viscosity structure of 
the lnantle beneath Siberia. neither of which 

served at the boundary (22). Raprd transgres- 
sion after the boundarv would follow froln 

All of the aforementioned isotopic anom- 
alies would have been enhanced bv the oc- 

the abrupt cessation of'siberian volcanism 
and the resulting ice caD recession. Cli- 

currence of acid rain, an expected'corol~ar~ 
effect of voluminous basaltic pyroclastic erup- 
tions. The patterns of extinction of terrestrial 
floras at the boundary (that is, a "fern spike") 
are consistent with reduced insolation and a 
p~11se of acid rain (8). The climatic impact of 
volcanogenic H,S04 depends strongly on 
whether SOL gas and coalescing droplets are 
transported rapidlv to the stratanhere. The 

u 

mate recovery may have been enhanced 
by slower developing greenhouse effects of 
volcanogenic gases, prilnarilv C O z  ( 1  0).  

is known. Thus it is possible that a consider- 
able fraction of the Paneaean landmass could u 

have been lifted (and subsecluently dropped) 
relative to sea level bv as much as 50 m. 
Plume uplift might have also promoted the 
formation of a Siberian ice sheet at P-T time. 

L ,  

abundance of pyroclastic ~~olcanism in the 
Siberian traps, perhaps -20% (1 1 ), provides a 
logical nlechanisrn for disturbing the tropo- 
pause and transporting aerosol beyond the 
troposphere. The paleolatitude of the Siberian 
traps (60" to BOON) was sufficiently high that 
polar lowering of the tropopause would have 

because ice acc~~mulation at high latitudes is 
very sensitive to continental elevation (25). C-2 sanidine (Meishani I t 

+ 0 54 Ma (Internal error) 
250 08 Ma { I 

+ 1 61 Ma (external error) 

2 4 0  r .  , . . . ,  , ,  , , , , , , , , ,  , , , , , , , , , . , ,  

1 00 

made the stratosphere significantly Inore ac- 
cessible to volcanoeenic aerosol innut 15). u L ~, 

Several researchers have concluded that the 
P-T mass extinctions were nrotracted 17) or ~, 

occurred in several pulses (28) and that the 
forlnallv recognized boundary represents only 
the dominant culmination of events. Such 
possibilities are consistent with the precursory 
Siberian (Maimecha-Kotui) nlagmatisrn dis- 
cussed above, which was probably analogous 
to the earliest plume manifestations some 3 
My before the main stage of Deccan magma- 
tisln in India (29). 

3 9 ~ r  released (cumulative %) 

Fig. 2. Apparent age spectra and Ca/K or WCa 
ratios for laser incremental-heating analyses of 
three samples. The vertical height of the boxes 
represents 20 intralaboratory error. The plateau 
ages were calculated for the indicated groups of 
steps; internal and external errors neglect and in- 
clude, respectively, uncertainties in the age of the 
neutron fluence monitor. 

Age (Ma) 

Fig. 3. Single-crystal apparent ages and age 
probability spectra (32) derived from laser total- 
fusion analysis of individual grains of feldspar from 
the samples indicated Individual data are repre- 
sented by black dots with 2u internal error bars. 
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Short- and Intermediate-Range Structural 
Ordering in Glassy Boron Oxide 

R. E. Youngman, S. T. Haubrich, J. W. Zwanziger," 
M. T. Janicke, B. F. Chmelka 

Ordering at short-length scales is a universal feature of the glassy state. Experiments on 
boron oxide and other materials indicate that ordering on mesoscopic-length scales may 
also be universal. The high-resolution nuclear magnetic resonance (NMR) measurements 
of oxygen in boron oxide glass presented here provide evidence for structural units 
responsible for ordering on short- and intermediate-length scales. At the molecular level, 
planar BO,,, units accounted for the local ordering. Oxygen-1 7 NMR spectra resolved 
detailed features of the inclusion of these units in boroxol rings, oxygen bridging two rings, 
and oxygen shared between two nonring BO,,, units. On the basis of these and cor- 
roborative boron-1 1 NMR and scattering results, boron oxide glass consists of domains 
that are rich or poor in boroxol rings; these domains are proposed to be the structural basis 
of intermediate-range order in glassy boron oxide. 

Inorganic network glasses such as B20,  and 
SiO, lack long-range structural order, a 
physical property that differentiates the111 
from analogous crystalline solids. However, 
glasses still have extensive shor;-range order 
ISRO) o n  length scales <i A, and some " 
exhibit substantia! intermediate-range order 
IIRO) at 5 to 20 A 11 ). O n e  such material is , , , ' 

glassy boron oxide, B20,,  which consists of 
planar BO,,? groups (that is, each boron is 
bound to three oxygen atoms, each of which 
is bound to another boron atom). T h e  ma- 
jority of the BO,,, groups are part of six- 
~l le~l lber  boroxol rings that are interconnect- 
ed to the rest of the BO,:, network by bridg- 
ing oxygen atoms (Fig. 1). T h e  remaining 
BO,,, units are not part of rings. T h e  boroxol 

ring is an  example of what Elliott calls a 
s ~ ~ ~ e r s t r u c t u r a l  unit, and it gives rise to IRO 
in this glass (2).  Evidence for the boroxol 
ring structure has been obtained from neu- 
tron scattering ( 3 ) ,  Ralnan spectroscopy (4), 
and NMR and l l~~c lea r  quadr~~pole  resonance 
(NQR)  (5, 6). These experiments suggest 
that 70 to 80% of the boron is in the  rings, 
which implies that the glass colnpositio~l is a 
nlixt~lre of cornparable amounts of boroxol 
rings and ~lonr ing B03:? units. Bray a~nd 
colleag~~es have also studied the oxygen sites 
in B20,  glass, using continuous wave "0 
NMR (7). Their spectra could be fit to a 
two-site model, which is collsistellt with seg- 
regation of the oxygen between ring and 
nonring BOiI2 units. 

Recent light-scattering studies (8, 9 )  o n  - 
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