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An Essential Role for Rho, Rac, and Cdc42 
GTPases in Cell Cycle Progression Through G, 

Michael F. Olson, Alan Ashworth, Alan Hall 

Members of the Rho family of small guanosine triphosphatases (GTPases) regulate the 
organization of the actin cytoskeleton; Rho controls the assembly of actin stress fibers 
and focal adhesion complexes, Rac regulates actin filament accumulation at the plasma 
membrane to produce lamellipodia and membrane ruffles, and Cdc42 stimulates the 
formation of filopodia. When microinjected into quiescent fibroblasts, Rho, Rac, and 
Cdc42 stimulated cell cycle progression through G, and subsequent DNA synthesis. 
Furthermore, microinjection of dominant negative forms of Rac and Cdc42 or of the Rho 
inhibitor C3 transferase blocked serum-induced DNA synthesis. Unlike Ras, none of the 
Rho GTPases activated the mitogen-activated protein kinase (MAPK) cascade that con- 
tains the protein kinases c-Rafl, MEK (MAPK or ERK kinase), and ERK (extracellular 
signal-regulated kinase). Instead, Rac and Cdc42, but not Rho, stimulated a distinct MAP 
kinase, the c-Jun kinase JNWSAPK (Jun NH,-terminal kinase or stress-activated protein 
kinase). Rho, Rac, and Cdc42 control signal transduction pathways that are essential for 
cell growth. 

Constitutively active V12Cdc42 (Cdc42 
with valine substituted for glycine at position 
12), V14Rho, VlZRac, and Vl2Ras recornbi- 
nant proteins were each microinjected with 
rat imlnunoglobulin G (IgG) into the cyto- 
plasm of quiescent Swiss 3T3 fibroblasts, and 
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the incorporation of bran~deoxyuridine 
(BrdU) into nascent DNA was rrleasured after 
40 to 48 hours (1,) .  Microinjection of rat IgG 
alone (Fig. 1, A and B) had no effect on DNA 
synthesis; -2% of the cells showed BrdU 
incorporation (Fig. 1C). Microinjection of 
V12Cdc42 efficiently stimulated DNA syn- 
thesis (Fig. 1, A and B); -90% of injected 
cells were positlve for BrdU incorporation 
(Fig. 1C). V12Ras, V14Rh0, and V12Rac also 
stimulated BrdU incorporation In the major- 
lty of the injected cells (Fig. 1C). 
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Two small GTPases are essential during 
the G, phase of the cell cycle. Microinjection 
of the neutralizing antibody to Ras Y13-259 
into quiescent cells blocks subsequent mito- 
genic stimulation (2), and inhibition of Rho, 
by adenosine diphosphate (ADP) ribosylation 
with C3 transferase, arrests cells in G, (3). To 
determine whether Rac or Cdc42 is required 
for cell cycle progression, we microinjected 
dominant negative forms of Rac and Cdc42 
into quiescent Swiss fibroblasts before addi- 
tion of serum. Eukaryotic expression vectors 
encoding epitope-tagged V12N 17Rac and 
N17Cdc42 were injected into the nuclei of 
quiescent fibroblasts, and cells were incubated 
for 16 hours to allow for expression of the 
mutant GTPases (4). The cells were then 
stimulated with fetal calf serum (20%) for 24 
hours in the presence of BrdU. Expression of 
N17Cdc42 (Fig. 2A) blocked BrdU incorpo- 
ration in response to serum (Fig. 2B). Approx- 
imately 80 to 90% of cells expressing 
N17Cdc42 or V12N17Rac were inhibited in 
BrdU incorporation, whereas over 95% of 
uninjected cells showed BrdU incorpora- 
tion. In addition, microinjection of C3 
transferase or the antibody to Ras Y13-259 
also blocked serum-induced DNA synthe- 
sis. Our results indicate that Rho, Rac, and 
Cdc42, along with Ras, each play an essen- 
tial role in G,  progression in response to 
mitogenic stimulation. 

Ras activates the mitogen-activated pro- 
tein kinase (MAPK) cascade that contains 
the protein kinases c-Rafl, MEK (MAPK or 
ERK kinase), and ERIC112 (extracellular sig- 
nal-regulated kinases 1 and 2) which leads 
to cellular growth in quiescent fibroblasts 
and differentiation in PC12 cells (5). We 
examined whether the stimulation of DNA 

synthesis induced by Rho, Rac, and Cdc42 
could be accounted for by activation of this 
MAPK pathway. A transient transfection 
protocol was used in which COS-1 monkey 
kidney cells were cotransfected with DNA 
encoding NH2-terminal Myc epitope-tagged 
ERKZ along with Myc epitope-tagged 
V12Cdc42, V14Rh0, V1 ZRac, Dl ZRas, or 
RafCAAX [a c-Rafl kinase targeted to the 
plasma membrane by a COOH-terminal lip- 
id modification signal from Ki-Ras (6 ) ]  (7). 
Expression of all transfected constructs was 
confirmed by protein immunoblotting with 
monoclonal antibody (mAb) 9E10 to the 
Myc epitope (anti-Myc). Activated DlZRas 
and RafCAAX stimulated the kinase activ- 
ity of immunoprecipitated ERKZ (Fig. 3A) at 
least 25-fold to phosphorylate myelin basic 
protein (MBP) (Fig. 3B). However, despite 
comparable amounts of ERKZ being immu- 
noprecipitated from transfected cells (Fig. 
3A), VlZRac, V14Rh0, and V12Cdc42 did 
not increase MBP phosphorylation (Fig. 3B). 

We also tested whether Rho, Rac, and 
Cdc42 could stimulate other MAPK-like 
cascades. Stimulation of the MAPK cascade 
that contains the protein kinases MEKK 
(MEK kinase), JNKK/SEK (JNK kinase or 
SAPKIERK kinase), and JNK/SAPK (Jun 
NH,-terminal kinase or stress-activated 
protein kinase) results in phosphorylation 
of the c-Jun transcription factor (8) at two 
sites in the NH,-terminus of the protein 
(9). These phosphorylation events increase 
the transactivation activity of the protein 
and result in increased transcription from 
AP-1 promoter sequences (1 0). A transient 
transfection protocol was again used in 
which COS-1 monkey kidney cells were 
cotransfected with DNA encoding an NH,- 

Fia. 1. St~mulat~on of DNA 
svithesis bv small GTPases. 

or V12Cdc42. 
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terminal epitope-tagged (FLAG epitope; 
Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys) ver- 
sion of JNKl and Myc epitope-tagged 
V12Cdc42, V14Rh0, VlZRac, DlZRas, the 
COOH-terminal kinase domain of MEKK, 
or RafCAAX ( I  1 ). Expression of all trans- 
fected constructs was confirmed by protein 
immunoblotting with anti-Myc and mAb 
M2 to the FLAG epitope. Treatment of cells 
with ultraviolet light (UV) or transfection 
with the COOH-terminal domain of MEKK 
increased the ability of immunoprecipitated 
JNKl (Fig. 4A) to phosphorylate recombi- 
nant GST (glutathione-S-mansferase)-c-Jun 
(Fig. 4B). In addition, V12Cdc42, VlZRac, 
and DlZRas also stimulated JNKl activity. 

Fig 2. Cdc42 is essential for serum-stimulated 
DNA synthesis. (A) Localization of Myc-N17Cdc42 
expressed from pMV-Myc-N17Cdc42 after mi- 
croinjection. (6) BrdU incorporation into cells inject- 
ed wlh pMV-MYC-N1 7Cdc42. 

Fig. 3. Activation of ERK2 by Ras and RafCAAX 
but not by the Rho family of GTPases. (A) Irnmu- 
noblot with antibody to the Myc epitope showing 
levels of ERK2 imrnunoprecipitated from cell ly- 
sates of COS-1 cells cotransfected with PEW- 
Myc-ERK2 and potential activators. (6) MBP 
phosphorylation by immunoprecipitated ERK2. 
Fold stimulation above the activity of ERK2 trans- 
fected alone (-) is indicated. 
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Fig. 4. Activation of JNK1 by Cdc42 and Rac but 
not by Rho. (A) Immunoblot with antibody to the 
FLAG epitope showing levels of JNK1 immuno-
precipitated from cell lysates of COS-1 cells co-
transfected with pCMV-FU\G-JNK1 and poten­
tial activators. (B) Phosphorylation of GST-c-Jun 
by immunoprecipitated JNK1. Fold stimulation 
above the activity of JNK1 transfected alone (-) is 
indicated. 

JNK1 immunoprecipitated from cells coex-
pressing VHRho or RafCAAX did not have 
increased GST-c-Jun phosphorylation ac­
tivity. Thus, activation of JNK1 does not 
result from nonspecific effects of overex-
pressing GTPases or of ERK activation. Fur­
thermore, the COOH-terminal domain of 
MEKK did not activate ERK2 (Fig. 3). 

Although the downstream elements of 
the Ras signaling cascade required for cell 
growth are well characterized, the down­
stream signaling targets through which Rho, 
Rac, and Cdc42 GTPases influence either 
cell growth or the organization of the actin 
cytoskeleton are unclear (12, 13). Our results 
support the idea that Rac and Cdc42 are 
regulators of the JNK MAP kinase-like cas­
cade. Ras can activate Rac in Swiss 3T3 cells 
(13), and Rac has an essential role in Ras-
mediated transformation (14). Given that 
Ras and RafCAAX stimulated ERK2 but 
only Ras stimulated JNK1 [Figs. 3 and 4 
(15)], there is an apparent bifurcation in the 
signaling pathways resulting in the activa­
tion of these MAP kinases by Ras. We pro­
pose, therefore, that the activation of JNK1 
by Ras is mediated by Rac and that this is 
required for Ras-induced transformation. 
Rho, which can also induce DNA synthesis, 
activated neither ERK2 nor JNK1. Although 
the mechanisms whereby Rac and Cdc42 
activate JNK1 are not known, both proteins 
can stimulate the activity of a serine-threo­
nine kinase, p65PAK (16), a close relative of 
which, STE20 (17), is an upstream activator 
of a MAP kinase pathway in Saccharomyces 
cerevisiae (18). Whether Rac/Cdc42-induced 
actin polymerization and stimulation of 
growth are two distinct downstream effects 
of the GTPases or whether they are both 
dependent on a common target such as 
p65PAK will require further investigation. 
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