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An Essential Role for Rho, Rac, and Cdc42
GTPases in Cell Cycle Progression Through G,

Michael F. Olson, Alan Ashworth, Alan Hall

Members of the Rho family of small guanosine triphosphatases (GTPases) regulate the
organization of the actin cytoskeleton; Rho controls the assembly of actin stress fibers
and focal adhesion complexes, Rac regulates actin filament accumulation at the plasma
membrane to ‘produce lamellipodia and membrane ruffles, and Cdc42 sfimulates the
formation of filopodia. When microinjected into quiescent fibroblasts, Rho, Rac, and
Cdc42 stimulated cell cycle progression through G, and subsequent DNA synthesis.
Furthermore, microinjection of dominant negative forms of Rac and Cdc42 or of the Rho
inhibitor C3 transferase blocked serum-induced DNA synthesis. Unlike Ras, none of the
Rho GTPases activated the mitogen-activated protein kinase (MAPK) cascade that con-
tains the protein kinases c-Rafl, MEK (MAPK or ERK kinase), and ERK (extracellular
signal-regulated kinase). Instead, Rac and Cdc42, but not Rho, stimulated a distinct MAP
kinase, the c-Jun kinase JNK/SAPK (Jun NH,-terminal kinase or stress-activated protein
kinase). Rho, Rac, and Cdc42 control signal transduction pathways that are essential for

cell growth.

Constitutively active V12Cdc42 (Cdc42
with valine substituted for glycine at position
12), V14Rho, V12Rac, and V12Ras recombi-
nant proteins were each microinjected with
rat immunoglobulin G (IgG) into the cyto-
plasm of quiescent Swiss 3T3 fibroblasts, and
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the incorporation of bramedeoxyuridine
(BrdU) into nascent DNA was measured after
40 to 48 hours (1). Microinjection of rat IgG
alone (Fig. 1, A and B) had no effect on DNA
synthesis; ~2% of the cells showed BrdU
incorporation (Fig. 1C). Microinjection of
V12Cdc42 efficiently stimulated DNA syn-
thesis (Fig. 1, A and B); ~90% of injected
cells were positive for BrdU incorporation
(Fig. 1C). V12Ras, V14Rho, and V12Rac also
stimulated BrdU incorporation in the major-
ity of the injected cells (Fig. 1C).



Two small GTPases are essential during
the G, phase of the cell cycle. Microinjection
of the neutralizing antibody to Ras Y13-259
into quiescent cells blocks subsequent mito-
genic stimulation (2), and inhibition of Rho,
by adenosine diphosphate (ADP) ribosylation
with C3 transferase, arrests cells in G, (3). To
determine whether Rac or Cdc42 is required
for cell cycle progression, we microinjected
dominant negative forms of Rac and Cdc42
into quiescent Swiss fibroblasts before addi-
tion of serum. Eukaryotic expression vectors
encoding epitope-tagged V12N17Rac and
N17Cdc42 were injected into the nuclei of
quiescent fibroblasts, and cells were incubated
for 16 hours to allow for expression of the
mutant GTPases (4). The cells were then
stimulated with fetal calf serum (20%) for 24
hours in the presence of BrdU. Expression of
N17Cdc42 (Fig. 2A) blocked BrdU incorpo-
ration in response to serum (Fig. 2B). Approx-
imately 80 to 90% of cells expressing
N17Cdc42 or V12N17Rac were inhibited in
BrdU incorporation, whereas over 95% of
uninjected cells showed BrdU incorpora-
tion. In addition, microinjection of C3
transferase or the antibody to Ras Y13-259
also blocked serum-induced DNA synthe-
sis. Our results indicate that Rho, Rac, and
Cdc42, along with Ras, each play an essen-
tial role in G, progression in response to
mitogenic stimulation.

Ras activates the mitogen-activated pro-
tein kinase (MAPK) cascade that contains
the protein kinases c-Rafl, MEK (MAPK or
ERK kinase), and ERK1/2 (extracellular sig-
nal-regulated kinases 1 and 2) which leads
to cellular growth in quiescent fibroblasts
and differentiation in PC12 cells (5). We
examined whether the stimulation of DNA

synthesis induced by Rho, Rac, and Cdc42
could be accounted for by activation of this
MAPK pathway. A transient transfection
protocol was used in which COS-1 monkey
kidney cells were cotransfected with DNA
encoding NH,-terminal Myc epitope-tagged
ERK2 along with Myc epitope-tagged
V12Cdc42, V14Rho, V12Rac, D12Ras, or
RafCAAX [a c-Rafl kinase targeted to the
plasma membrane by a COOH-terminal lip-
id modification signal from Ki-Ras (6)] (7).
Expression of all transfected constructs was
confirmed by protein immunoblotting with
monoclonal antibody (mAb) 9E10 to the
Myc epitope (anti-Myc). Activated D12Ras
and RafCAAX stimulated the kinase activ-
ity of immunoprecipitated ERK2 (Fig. 3A) at
least 25-fold to phosphorylate myelin basic
protein (MBP) (Fig. 3B). However, despite
comparable amounts of ERK2 being immu-
noprecipitated from transfected cells (Fig.
3A), V12Rac, V14Rho, and V12Cdc42 did
not increase MBP phosphorylation (Fig. 3B).

We also tested whether Rho, Rac, and
Cdc42 could stimulate other MAPK-like
cascades. Stimulation of the MAPK cascade
that contains the protein kinases MEKK
(MEK kinase), JNKK/SEK (JNK kinase or
SAPK/ERK kinase), and JNK/SAPK (Jun
NH,-terminal kinase or stress-activated
protein kinase) results in phosphorylation
of the c-Jun transcription factor (8) at two
sites in the NH,-terminus of the protein
(9). These phosphorylation events increase
the transactivation activity of the protein
and result in increased transcription from
AP-1 promoter sequences (10). A transient
transfection protocol was again used in
which COS-1 monkey kidney cells were
cotransfected with DNA encoding an NH,-
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Fig. 1. Stimulation of DNA
synthesis by small GTPases.
(A) Immunoglobulin G local-
ization after microinjection of
IgG (1.0 mg/mi) (left panel) or
V12Cdc42 (3.5 mg/ml) and
IgG (1.0 mg/ml) (right panel).
(B) BrdU incorporation into
cells injected with 1gG (left
panel) or V12Cdc42 and IgG
(right panel). (C). Stimulation
of DNA synthesis in cells mi-
croinjected with rat IgG,
V12Ras, V12Rac, V14Rho,
or V12Cdc42.
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terminal epitope—tagged (FLAG epitope;
Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys)  ver-
sion of JNK1 and Myc epitope—tagged
V12Cdc42, V14Rho, V12Rac, D12Ras, the
COOH-terminal kinase domain of MEKK,
or RafCAAX (11). Expression of all trans-
fected constructs was confirmed by protein
immunoblotting with anti-Myc and mAb
M2 to the FLAG epitope. Treatment of cells
with ultraviolet light (UV') or transfection
with the COOH-terminal domain of MEKK
increased the ability of immunoprecipitated
JNK1 (Fig. 4A) to phosphorylate recombi-
nant GST (glutathione-S-transferase)—c-Jun
(Fig. 4B). In addition, V12Cdc42, V12Rac,
and D12Ras also stimulated JNK1 activity.

Fig 2. Cdc42 is essential for serum-stimulated
DNA synthesis. (A) Localization of Myc-N17Cdc42
expressed from pEXV-Myc-N17Cdc42 after mi-
croinjection. (B) BrdU incorporation into cells inject-
ed with pEXV-Myc-N17Cdc42.
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Fig. 3. Activation of ERK2 by Ras and RafCAAX
but not by the Rho family of GTPases. (A) Immu-
noblot with antibody to the Myc epitope showing
levels of ERK2 immunoprecipitated from cell ly-
sates of COS-1 cells cotransfected with pEXV-
Myc-ERK2 and potential activators. (B) MBP
phosphorylation by immunoprecipitated ERK2.
Fold stimulation above the activity of ERK2 trans-
fected alone (-) is indicated.
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Fig. 4. Activation of JNK1 by Cdc42 and Rac but
not by Rho. (A) Immunoblot with antibody to the
FLAG epitope showing levels of JNK1 immuno-
precipitated from cell lysates of COS-1 cells co-
transfected with pCMV-FLAG-JNK1 and poten-
tial activators. (B) Phosphorylation of GST-c-Jun
by immunoprecipitated JNK1. Fold stimulation
above the activity of JNK1 transfected alone (-) is
indicated.

JNK1 immunoprecipitated from cells coex-
pressing V14Rho or RafCAAX did not have
increased GST—c-Jun phosphorylation ac-
tivity. Thus, activation of JNK1 does not
result from nonspecific effects of overex-
pressing GTPases or of ERK activation. Fur-
thermore, the COOH-terminal domain of
MEKK did not activate ERK2 (Fig. 3).
Although the downstream elements of
the Ras signaling cascade required for cell
growth are well characterized, the down-
stream signaling targets through which Rho,
Rac, and Cdc42 GTPases influence either
cell growth or the organization of the actin
cytoskeleton are unclear (12, 13). Our results
support the idea that Rac and Cdc42 are
regulators of the JNK MAP kinase-like cas-
cade. Ras can activate Rac in Swiss 3T3 cells
(13), and Rac has an essential role in Ras-
mediated transformation (14). Given that
Ras and RafCAAX stimulated ERK2 but
only Ras stimulated JNK1 [Figs. 3 and 4
(15)], there is an apparent bifurcation in the
signaling pathways resulting in the activa-
tion of these MAP kinases by Ras. We pro-
pose, therefore, that the activation of JNK1
by Ras is mediated by Rac and that this is
required for Ras-induced transformation.
Rho, which can also induce DNA synthesis,
activated neither ERK2 nor JNK1. Although
the mechanisms whereby Rac and Cdc42
activate JNK1 are not known, both proteins
can stimulate the activity of a serine-threo-
nine kinase, p65PAK (16), a close relative of
which, STE20 (17), is an upstream activator
of a MAP kinase pathway in Saccharomyces
cerevisiae (18). Whether Rac/Cdc42-induced
actin polymerization and stimulation of
growth are two distinct downstream effects
of the GTPases or whether they are both
dependent on a common target such as
p65PAK will require further investigation.
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