Multiscaling Properties of Large-Scale Structure
in the Universe
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The large-scale distribution of galaxies and galaxy clusters in the universe can be de-
scribed in the mathematical language of multifractal sets. A particularly significant aspect
of this description is that it furnishes a natural explanation for the observed differences
in clustering properties of objects of different density in terms of multiscaling, the generic
consequence of the application of a local density threshold to a multifractal set. The
multiscaling hypothesis suggests ways of improving upon the traditional statistical mea-
sures of clustering pattern (correlation functions) and exploring further the connection

between clustering pattern and dynamics.

Ohne of the key problems in modern cos-
mology is understanding how the spatial
clustering of objects such as galaxies and
galaxy clusters can provide clues about the
evolution of primordial density inhomoge-
neities under the action of gravitational
instability. The traditional tool for quanti-
fying the spatial correlations of cosmologi-
cal objects is the two-point correlation
function &(r), defined in terms of the prob-
ability 8P of finding a pointlike object of a
given type, such as a galaxy, in a small
volume 8V at a distance r from a given
object of the same type

P =n[l + &(r)]3V (1)

where n is the mean number density of
objects. The two-point correlation function
for galaxies, ggg(r), is well fitted by a power
law in the range r = 0.1h™! to 10h~! Mpc
(1, 2): &ge(r) = (v/r) ™7, with an exponent
v~ 1.8 £ 0.1 and a correlation length r, =~
(5 = 1)h~! Mpc (h is the Hubble constant
in units of 100 km s~ Mpc™1!). Analyses of
samples of galaxy clusters, however, have
yielded power-law fits to the cluster-cluster
correlation function, §_(r), of a form simi-
lar to that of &,(r) but with exponents
(3-10) varying in the range y = 1.6 to 2.6
and correlation lengths from 13h~! to
30h~! Mpc, with a strong dependence of 1,
on the richness class of the clusters selected
(11, 12).

Szalay and Schramm (13) noted that the
clustering correlation lengths 7o, for differ-
ent classes of objects i can be described in
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terms of a unified scheme in which r,,
scales with mean separation: r,, « d; =
n,” 13, where n, is the mean number density
of the objects. If the two-point correlation
functions of different classes of objects all
have a power-law shape with almost the
same exponent vy ~ 1.8, then &(r) can be
expressed in a universal dimensionless form

(14, 15)

£(r) = B<W> 2)

where B = 0.2 to 0.3 (14, 15). This relation
is remarkably well fitted by optical clusters,
x-ray clusters, groups of galaxies, quasi-stel-
lar objects, and radio galaxies, and although
there are still significant uncertainties in
the power-law fits for clusters, the general
trend of increasing r, with richness seems to
be well established observationally and is
reproduced in numerical simulations of
cluster clustering (16, 17). On the other
hand, optical galaxies and IRAS galaxies

(those first observed with the Infrared As- -

tronomical Satellite), the objects for which
most data are available, do not appear to fit
into this scheme (14, 15, 18), because they
are characterized by larger values of g ~ 1.1
(15). This could be because small-scale
(<5h™! Mpc) galaxy clustering is principal-
ly determined by nonlinear gravitational
effects and is therefore enhanced with re-
spect to the weakly nonlinear clustering
displayed by clusters on large scales
(>20h~! Mpc). In this report we shall show
how these observational trends—in partic-
ular, the apparent difference in clustering
behavior between clusters of galaxies and
galaxies themselves—can be explained in
terms of the multiscaling phenomenon,
which is associated with the application of
density thresholds to multifractal sets.
Scaling is said to occur in a geometrical
pattern whenever some quantity describing
the spatial distribution has a power-law de-
pendence on scale. For example, fractal
models of coastlines have a length L that
depends on the resolution d used to measure
it according to L(d) « d' P for some non-
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integer D: in this case, D is the Hausdorff
dimension of the coastline structure. In
contrast to simple fractals like this, which
are described by a single scaling dimension
(D), multifractal sets involve a spectrum of
scaling indices: the density around different
points is characterized by different (local)
fractal dimensions. A particularly important
signature of multifractal scaling is the fact
that moments of the distribution of differ-
ing order g scale in a manner described by
different dimensions D, (for a simple frac-
tal, D, = D for all g). Such objects have
proven extremely useful in describing a va-
riety of nonlinear phenomena in turbu-
lence, chaotic dynamics, and disordered sys-
tems (19), and there is now considerable
evidence that galaxy clustering is intrinsi-
cally multifractal in character, perhaps con-
nected with the supposed self-similarity of
gravitational evolution (20).

In the context of galaxy clustering, the
important exponent is the correlation di-
mension D,, which is defined in terms of
scaling of the correlation integral C(r) over
a distance s

Clr) = J’T 47n[l + E(S)]Szds = A (3)

0

where A is a constant. The index D, is a
clean and easy to interpret measure of clus-
tering strength: the larger the value of D,
the weaker the large-scale clustering. Note
that power-law scaling of C(r) implies pow-
er-law scaling of &(r) only if &(r) >> 1. If
this is the case, then Eq. 3 yields D, ~ 3 —
v. However, this equality is not expected to
hold in the range of scales where the cor-
relation function is of order unity. Conse-
quently, if the correlation integral behaves
as a power-law when £(r) ~ 1, the function
&(r) itself does not. By differentiating Eq. 3
with respect to r and putting r = 7, we

obtain
ADZ 1/G-D2)
0 (ﬁ) “

which furnishes a useful estimator of .

Multiscaling (21) is the general term
given to scaling behavior in which the
characteristic exponent (in this:case D,) is
a slowly varying function of scale or of the
threshold density used to selecy objects of
different richness from an underlying distri-
bution. This form of scaling is a general
consequence of applying a density cutoff to
a multifractal set. Regions of higher density
in multifractal sets have smaller values of
the scaling indices. If, for example, such a
set is “censored” by removing all of the
points where the local density is less than
some given value €, then the correlation
dimension of the surviving set will be small-
er than that of the uncensored set: D,(€) <
D,.
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This kind of thresholding is reminiscent
of the idea of “biasing” (22), in which
regions of high primordial density are iden-
tified with observable objects. Our philoso-
phy is, however, quite different from this in
that we apply our thresholding to the non-
linear density field modeled as a multifrac-
tal, rather than the initial (Gaussian) den-
sity perturbations. In this respect, our ap-
proach improves considerably on the stan-
dard approach to biasing.

To demonstrate the applicability of this
description to a realistic example, we first
analyzed a series of numerical simulations of
the distribution of rich clusters (17). In these
simulations, clusters are identified as the
highest peaks in the evolved density field.
Consequently, cluster populations character-
ized by progressively larger mean separations
d, are selected by applying progressively high-
er density thresholds. A plane projection of
the three-dimensional density field of one of
these simulations is shown in Fig. 1 for a
so-called CHDM model, in which 30% of
the critical density of the universe is provid-
ed by one flavor of massive neutrinos and the

Table 1. Correlation length r, and correlation di-
mension D, at several values of the mean cluster
separation d,.

-1

d,{,fg o ro (™" Mpo) D,
20 65+ 1.1 256 + 0.02
30 15.5 + 1.7 217 + 0,03
40 19.7 + 1.7 100 + 0.03
50 23+15 170 + 003
60 240+ 1.3 154+ 0.03

-

Fig. 1. The density field of a three-dimensional
box of a CHDM simulation projected onto a plane
as a translucent rendering of the volume. Red
corresponds to high-density peaks and blue to
low-density regions in a rainbowlike sequence.
Different structures dominate at different length
scales, illustrating the underlying multifractal
structure that produces the empirically observed
multiscaling.
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remainder is made up mainly of cold relic
particles (23). This model has been shown to
be reasonably successful at accounting for
observed large-scale structure. The morphol-
ogy corresponds to that of a multifractal
distribution, rather than a simple fractal. Fig-
ure 2 shows the correlation integral results
for such simulated universes.

Multiscaling behavior is clearly present
in these simulations: D, varies with the
characteristic interparticle distance of each
sample d. We have also analyzed the vari-
ation of the correlation length 7, as a func-
tion of d; calculated by means of Eq. 4.
Results are given in Table 1 and correspond
to fitting C(r) over the scale range 10h"! to
50h! Mpc. As expected on the basis of our
multiscaling hypothesis, richer clusters
(that is, with larger d,) generate less steep
C(r) and larger r,. The remarkably small
errors in the fitting parameters (especially
on D,) show that there is an excellent
power-law fit to C(r) over the entire range
of scales considered.

A similar qualitative behavior is man-
ifested by the observed distribution of cos-
mic objects. If galaxies and galaxy systems
with increasing richness are considered to
be selected by applying a density threshold
in the mass distribution, the multiscaling
argument implies that the corresponding
values of the correlation dimension D,
must decrease with increasing density. We
show here the results of a correlation in-
tegral analysis of different galaxy and clus-
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Fig. 2. The correlation integral C(r) for the cluster
samples drawn from CHDM simulations in a cu-
bic volume of side 320h~' Mpc. We plot averag-
es over 50 realizations of this model; error bars
correspond to the 1o scatter evaluated over the
ensemble. Arbitrary units are chosen for C(r) to
make all of the curves coincident at large sepa-
rations. Going from top to bottom, we plot re-
sults for progressively lower values of the mean
separation d,.
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ter samples. For galaxies we use the Center
for Astrophysics (CfA) sample (2), the Per-
seus-Pisces sample (24), and the QDOT
(Queen Mary, Durham, Oxford, and Toron-
to)-IRAS redshift survey (25). The cluster
samples used are the Abell and ACO
(Abell-Corwin-Olowin) catalogs (26), the

Edinburgh-Durham  Cluster  Catalog
(EDCC) redshift survey (8), the ROSAT
x-ray—selected cluster sample (10), and
the APM (Automated Plate Measuring)
cluster catalog (9). We have performed
the calculation of C(r) directly on the
CfA and QDOT galaxy surveys and Abell
and ACO catalogs; in the other cases we
just have integrated the published values
of &(r). Although this latter procedure is
straightforward, the numerical integration
does tend to exaggerate errors: direct cal-
culations of C(r) are generally better.
The x-ray, Abell, ACO, and APM clus-
ter correlation integrals are all well-fit by a
power law with exponent D, =~ 2.1 (Fig. 3).
The EDCC sample yields a value of D, =~
1.8 over the same scaling range. A value of
D, =~ 2.5 applies to the optical galaxy cat-
alogs (CfA and Perseus-Pisces), and a value
of D, ~ 2.8 is obtained for the QDOT-
IRAS galaxies. These values for D, are
quite different from those obtained with y
~ 1.8 for the slope of &(r) and in the
relation D, = 3 — . This is essentially
because the range of scales for which we
obtain the various estimates of D, in Fig. 2
does not coincide with the range where
£..(r) behaves as a power law; clusters of
galaxies sample this range of scales particu-
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Fig. 3. The correlation integral C(r) for the galaxy
and cluster samples. The distribution of most of
the cluster samples are well described by a power
law with an exponent D, = 2.1 (solid line), al-
though the EDCC samples are better described
by D, = 1.8. The CfA and Perseus-Pisces (P-P)
galaxy samples (dotted line) have D, = 2.5, and
the QDOT-IRAS galaxies (dashed line) have D, =
2.8. Results are given in arbitrary units because
C(r) has been rescaled to facilitate comparison of
the different slopes D,,. Bootstrap errors are plot-
ted for several samples.



larly poorly. Because the smaller D, is, the
larger is the departure from a uniform space-
filling distribution, these results mean that
clusters of galaxies have stronger correla-
tions than optical galaxies, which, in turn,
have stronger correlations than IRAS gal-
axies. It is natural to interpret these trends
in terms of multiscaling of objects identified
in terms of different richness thresholds. A
self-consistent picture emerges in which
clusters correspond to higher matter densi-
ties than typical optical galaxies, which are
themselves located (on average) in denser
environments than IRAS galaxies. Even
the apparently anomalous behavior of
EDCC is consistent with this trend: clusters
from this sample are, on average, richer
than in the other cluster samples, so its
behavior confirms the multiscaling of clus-
ters of different density seen in the simula-
tions we have already described.

An important point to emerge from this
analysis is that the most natural and effec-
tive way to characterize scaling properties of
the clustering of objects of different intrin-
sic richness is through the correlation inte-
gral C(r) rather than the two-point corre-
lation function &(r). Although differences
in the two descriptions are small if &(r) >>
1, in the regime where £ =~ 1, no distribu-
tion can simultaneously display scaling of
both &(r) and C(r). The correlation integral
description allows a wide range of empirical
clustering data to be unified into a single
coherent framework within which multi-
scaling is a natural consequence. For exam-
ple, the fact that D, for IRAS galaxies is
larger than that for optical samples indi-
cates that IRAS galaxies are less correlated
than optical galaxies, or in other words,
that optical galaxies correspond to higher
peaks of the density distribution.

Using Eq. 4, we can obtain clean esti-
mates of 1, for these data sets. For the ACO
sample, we get 1, =~ 23h~! Mpc, and for the
Abell sample, r, ~ 26h~" Mpc in the range
10h~! to 50h™! Mpc, whereas for the APM
cluster catalog, we get ry =~ 16.7h™! Mpc in
the range 1h~! to 40h™! Mpc, in agreement
with the value reported by Dalton et al.
fitting &(r) directly to a power law (9).

What is missing at the moment from
this approach is a detailed understanding
of the way initial conditions and dynamics
interact to produce the observed scaling
properties. Nevertheless, the ability to in-
corporate the dependence of clustering
strength on richness into a unified multi-
fractal scaling paradigm through the mul-
tiscaling hypothesis is a considerable ben-
efit of this approach. Moreover, the ro-
bustness of C(r) scaling compared to that
of &(r) strongly motivates the use of C(r)
as a diagnostic of clustering pattern and
dynamics. Only by the use of appropriate
statistical tools such as this will the new

generation of galaxy redshift surveys lead
to a theoretical understanding of the ori-
gin of large-scale structure in the universe.
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Biological Controls on Coral Sr/Ca and 520
Reconstructions of Sea Surface Temperatures

Stephanie de Villiers,* Bruce K. Nelson, Allan R. Chivas

Coral strontium/calcium ratios have been used to infer that the tropical sea surface
temperature (SST) cooled by as much as 6°C during the last glacial maximum. In contrast,
little or no change has been inferred from other marine-based proxy records. Experimental
studies of the effect of growth rate and the magnitude of intraspecific differences indicate
that biological controls on coral skeletal strontium/calcium uptake have been underes-
timated. These results call into question the reliability of strontium/calcium—based SST

reconstructions.

Paleoclimate reconstructions of tropical
SSTs during the last glacial maximum
(LGM) have produced contradictory results:
Continental temperature proxy records sug-
gest that the tropics were 4° to 6°C colder
during the LGM (1), as opposed to estimates
from planktonic microfossil assemblages,
which suggest little or no change (2). The
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resolution of this discrepancy is key to estab-
lishing the sensitivity of the tropics to global
climate change (3). The Sr/Ca content of
coral skeletons has recently bean used as a
proxy for SST (4, 5). The bAasi "principle is
that the correlative relation, bgrween coral
Sr/Ca and SST can be applied to fossil coral
specimens to reconstruct SSTs in paleoenvi-
ronments. The Sr/Ca measurement precision
of <0.1%, equivalent to ~0.1°C, is 10 times
that of other paleothermometers (4). The
Sr/Ca results suggest that the tropical west-
ern Pacific and western Atlantic were 4° to
6°C cooler during the LGM than today (4,
5); this estimate is in agreement with terres-
trial temperature proxy records but contra-
dicts other marine-based records (1-3).
Two key assumptions are made in apply-
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