
metastable olivine (6, 7) and deep focus 
earthquakes through transformational fault- 
ing (26-28), and on mantle discontinuities 
(5), where nucleation kinetics can affect 
discontinuity thickness. 
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O n e  of the most important problems in the 
science of global change is the balancing of 
the global budget for atmospheric C 0 2 .  Al- 
though anthropogenic activities have clear- 
ly altered the global carbon cycle, signifi- 
cant gaps exist in our understanding of this 
cvcle. Of the CO, emitted into the atmo- 
sphere as a result of burning fossil fuels, 
roughly half remains in the atmosphere and 
the other half is absorbed into the oceans 
and the terrestrial biosphere. The partition- 
ing between these two sinks is the subject of 
considerable debate. Whereas most cheini- 
cal oceanographers are confident that the 
oceanic sink is not laree enough to account - 
for the entire absorption, many terrestrial 
ecologists doubt that the land bios~here can 

u 

be a large carbon sink, particularly given 
the source to the atmosphere through de- 
forestat~on, hence, the issue of the "miss- 
ing" carbon sink. without a good account- 
ing for the fate of C 0 2  leaving the atmo- 
sphere, predictions of future C 0 2  concen- 
trations that result from different emission 
scenarios will remain uncertain. This, in 
turn, weakens the link between energy pol- 
icv and climate change. " 

Observations of the north-south gradl- 
ent of atmospheric C 0 2  show that there 
must be a large carbon sink In the Northern 

Hemisphere (1,  2). This sink has been as- 
cribed either to the North Atlantic Ocean. 
on the basis of sparse measurements of 13C/ 
12C ratios in atmospheric C 0 2  ( I ) ,  or to 
terrestrial mechanisms. on the basis of mea- 
surements of the saturation of surface sea- 
water with respect to atmospheric CO, (2). 
The latter study disagreed with the former 
and suggested that it is unlikely that the 
northern oceans could be resoonsible for 
most of the sink. Here we present the results 
of a greatly expanded global network of 
measurements of 13C/12C ratios in atmo- 
spheric C 0 2 .  The 13C/'2C ratios provide a 
good fingerprint of terrestrial biospheric 
fluxes of C 0 2 ,  as plant photosynthesis dis- 
criminates against 13C, whereas isotopic 
fractionation during C 0 2  invasion into the 
oceans is small. Thus, in combination with 
concentration measureinents. '3C112C ra- 
tios can be used to distinguish the' oceanic 
and terrestrial biospheric fluxes of CO, 
from the atmosphere. Our results for 1992 
and 1993 indicate that a strong terrestrial 
biosoheric carbon sink existed in the tem- 
perate latitudes of the Northern Hemi- 
sphere during those years with a magnitude 
roughly half that of the global fossil fuel 
burning flux. 

Since 1990. the Stable Isoto~e Labora- - 
tory at the Institute of Arctic and Alpine 

P. Ciais, Nat~onal Oceanic and Atmospheric Admlnstra- Research (INSTAAR) has measured S13C 
t~on's Climate Mon~tor~ng and D~agnost~cs Laboratoiy 
(NOAAICMDL), R/E/CGl. 325 Broadway, Boulder, CO 

(3) in C 0 2  from weekly samples of air from 
80303, USA, and LMCE-DSM Commissar~at a I'Enerqie a network of sites, complementillg measure- 
Atomque. L'Orme des Meursiers, 91 191.   if sur ~ v e i t e  ments of CO, mixine ratios made bv the 
Cedex, France. 
P. P. Tans, NOWCMDL, R/WCGI, 325 Broadway. 

National 0 c k n i c  a& ~tmospheric '  Ad- 

Boulder, CO 80303, USA. ministration's Climate Monitoring and Di- 
M. Troller. NOWCMDL. R/E/CGI. 325 Broadwav, aenostics Laboratorv INOAAICMDL). 111 

8 ~ 

Boulder, do 80303. USA, and lnstltute of Arct~c a;d and 1993, 41 from ;his 
Alpine Research (INSTAAR), University of Colorado, 
Boulder. CO 80309, USA. were measured for S13C. These data were 
J. W. C Whte, NSTAAR, and Department of Geological augmented by measurements made by the 
Sciences, University of Colorado. Boulder, CO 80309, ~ i ~ ~ ~ ~ ~ ~ ~ ~ l ~ h  Scientific and Industrial 
USA. 
R. J Francey, Commonwealth Sc~ent~fic and Industrial Research Organisation (CSIRo) two 
Research Organisat~on, Divis~on of Atmospheric Re- sites (4) at high southern latitudes (Fig. 1). 
search, Mordiaoc, V~ctoria 31 95, Australia. From the smoothed atmospheric observa- 
'To whom correspondence should be addressed. tions, the latitudinal distribution of the sur- 
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Fig. 1. (A) Map of the global net- 
work of sites where air samples are 
collected weekly for measurement 
of Sq3C and CO,. 0. NOM-Unver- 
sity of Colorado sites measured for 
CO, and Sq3C; C, NOW-University 
of Colorado shipboard data mea- 
sured for CO, and 6i3C; C. NOAA 
sites measured only for CO,: m, 
CSRO sltes: V, "polluted" sites 
close to large ndustrial areas (TAP, 
BAL) where the atmosphere IS typ- 
cally more depleted In j3C0, and 
has a hlgher CO, partial pressure 
bO,) than the at~tudnal average. 
The "polluted" sites are kept In the 
latitudinal f ~ t  but are given a smaller 
we~ght. (B) Observed north-south 
gradients of Si3C in the atmosphere 
in 1993 in winter (January to March) 
and (C) in summer (July to Septem- 
ber). The fit to the observations (sol- 
id line) is constructed in the same 
manner a s  the quasi-weekly fits 
used in the inverse model. 

face fluxes of CO, and 13C0, have been 
calculated. with mass conservation. bv us- 
ing a two-dimensional (latitude, height) 
zonally averaged model of atlnospheric 
transport (5, 6) .  This "inverse" method is 
constrained a t  Earth's surface a t  every lati- 
tude and time steD bv the a tmos~her ic  ob- 

100°E 140°E 180" 14OoW 10O0W 60°W 20"W 20°E 60"E 

Longitude 

. , 
servations, yielding lnathe~natically unique 
solut~ons for the separate fluxes of CO, and 
13C0,. T h e  partitioning of the net fluxes 
from land and oceans is then determined 
from linear euuations (6 ) .  W e  note that 
surface fluxes calculated in this way do  not  
entirely equate to storage in  the  same re- 
gion, as some of the carbon fixed by pho- 
tosynthesis o n  land finds its way to the  
oceans via rivers or escaDes in  the  form of 
reduced gases such as C O ,  CH4,  and other 
hydrocarbons (7). 

Apart from known fossil file1 ernlsslolls 
and their   so topic co~nposition (8), the pro- 
cedure d e ~ e n d s  o n  three Darameters Ifor de- 
tails see (6)]. First, the discrimination against 
13C by plant photosynthesis, linked to the 
partial pressure of CO, (pCO.) in chloroplasts 
(9), is calculated monthly fiorn the coupled 
biosphere model, SiB-2 (1 0, 1 1 ). T h e  SiB-2 
model has a resolution of 4" by 5" and is 
coupled to the Colorado State University 
general circulation model. With  SiB-2 the 
full carbon and water budgets of plant5 can 
be exn l~c~ t lv  and Interact11 elv calculated 
(12). This abproach has the adGantage that 
monthly averages are calculated from de- 
tailed diurnal cvcles of the nertinent vari- 
ables, thus capturing the effects of processes 
o n  all relevant time scales. Our  discrirnina- 
tion model makes a distinction between C4 
and C, plants o n  a geographical basis, but it 
does not account for seasonal asvnchronv 
between the two fixation pathways 111 m x e d  
ecosvsterns. 

Jan-Mar July-Sep 

m 900N 

Second, the  isotopic composition of car- atmospheric 613C was less negative than ~t 
boll respired by soils is calculated with the is today as the  result of the  addition of CO, 
CENTURY soil model (13).  Organic car- from fossil fuels depleted in 13C). In the 
bon in  soils derives from the  nroducts of global version of the CENTURY model, - 
photosynthesis of previous years (when the  soil organic carbon is divided into four sep- 

Table 1. Ocean and land exchange of CO, averaged over large latitude bands with the correspond- 
ing error estimates. Ocean and land fluxes bear dentical uncertainties but correlate such that the 
sum of ocean and land fluxes always equals the net flux of CO, (the latter IS expressed after 
subtraction of fossil fuels). The uncertantes of each of the sotopic parameters (given in the lower 
part of the table) were estimated as follows: the disequibrium of carbon In soils IS uncertan by 
30%, the photosynthetic fractionation by 1 per mil. Si3C of carbon in surface waters by 0.2 per mil. and 
the air-sea gas exchange by 30%. For the variation in longitude of CO, and Si3C observations. 
we made repeated runs of the two-d~mens~onal model (5. 6) using different bootstrap selections of 
the sites shown In Fig. 1 .  The uncertainty In the magnitude and isotopc abelng of fossil fuel releases 
do not have a large effect on the deduced partitioning between ocean and land. For example. a 
mismatch of 1 per mi between the estmated and real values of Si3C in fossl fuels would lead to an 
error on the estimated global terrestrial uptake of only 25 Tmol of CO, (0.3 gigatons of C) (6. 24). Eq, 
equator. 

Pariitioning of CO, by latitude band (Tmol of CO,) 

Area 
isotopic 

Fossil Airno- 

parameters 90°N- 30"s- Eq- 30°N- Glo- 
30"s Eq 30"N 90°N spheric b a  emis- Increase sions 

Land 
Ocean 
Total 

Land 
Ocean 
Total 

Isotop~c parameters 
Dsequlibrum with 

sols 
Disequibrium wlth 

oceans 
Discrimnation by 

photosynthesis 
Longitudinal varability 
Total uncertainty 

Partitioning of CO, in 7 992 
-46 -33 244 -354 -190 
-95 19 -101 -27 -205 

-141 1 4  143 3 8 2  -394 508 114 

Partitioning of CO, in 1993 
-65 -26 97 -253 -246 
7 7  65 3 3  5 5  9 9  

1 4 2  39 65 -307 3 4 5  508 163 

Uncertainty estimates of CO, partitioning 
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arate pools in which the residence time of 
carbon is controlled by temperature and soil 
texture. As an example, 20% of the carbon 
respired at high northern latitudes is found 
to lag the atmosphere by up to 100 years. In 
forest ecosystems, the residence time of car- 
bon in soils is augmented to account for 
previous storage in aboveground woody tis- 
sues. We assumed that woody tissues make 
up about 30% of the total aboveground 
biomass and that they lag the atmosphere 
by 40 years on average. 

Third, the 613C of ocean surface waters, 
which also lags the decrease forced on the 
atmosphere, is estimated from a compila- 
tion of measurements (14). The influence 
on the atmosphere is modulated by the 
air-sea transfer velocity (15). 

We also estimated how systematic errors 
in these three parameters affect our conclu- 
sions by letting each one vary about its 
preferred value (1 6). The longitudinal vari- 
ations of the data contribute to the uncer- 

Fig. 2. Ocean and land 
partitioning of CO, as a 
function of latitude. The 
solid red line is the annu- 
al mean net flux of CO, 
without the contribution 
of fossil fuel emissions. 
The dashed blue line is 
the net exchange of CO, 
with the oceans, and the 
dash-dot green line is 
the net exchange on 
land. Units are 1014 mol 
of CO, per year (100 
Tmol year-') for each 
model latitude band. The 
model has 20 equal area 
bands in sine of latitude. 
The errors (one-sided, 
lo) are plotted on the 
bottom axis for each lat- 
itude band. 

Fig. 3. Ocean and land 
partitioning of CO, fluxes 
as a function of time. 
Latitude bands in the 
tropics and at northern 
mid-latitudes are shown 
as examples. At northern 
mid-latitudes, the lower 
values for net growing 
season uptake during 
1990 and 1991 are arti- 
facts of the sparser iso- 
topic measurements in 
those years. When con- 
strained with sufficient 

tainty of our results from the two-dimen- 
sional model. We partially evaluate this 
through a bootstrap analysis, where the 
land-ocean partitioning is repeatedly calcu- 
lated after adding and omitting measure- 
ment sites. This .method also yields an esti- 
mate of the error due to sparse data cover- 
age. The estimates of the above sources of 
error are summarized in Table 1. 

At this time. we can draw c'onclusions 
about the nature of strong regional CO, 
fluxes, thoueh not vet about the ~recise 
globally incgrated 'partitioning between 
land and oceans. The global total land and - 
ocean fluxes are sums of positive and nega- 
tive regional contributions; the relative 
magnitude of their sums is sensitive to as- 
sumptions about the time lag in the propa- 
gation of an atmospheric isotopic signature 
into the terrestrial biosphere and to the 
absolute calibration of the isoto~ic mea- 
surements. The uncertainty of the isotopic 
equilibrium fractionation factor between 

* 

i : 
3 
E -2 : 2 -4 
n 
3 -6 
N Latitude band 1PN-18W 

data, the seasonality of I 1 ,  . . . . .  a . . . . . c . . . . . l . . . . . t 1  

carbon uptake in the 1990 1901 1992 1993 
tropics is clearly terrestri- 
al. We note that the mirroring effect of the terrestrial biospheric and oceanic fluxes for the tropical zone 
may be indicative of a problem with the isotopic data (see text). The colored lines are as described in 
Fig. 2. 

CO, in the atmosphere and in ocean water 
also contributes significantly (1 7). Howev- 
er, on a regional scale, such uncertainties 
can be overwhelmed by the large size of the 
fluxes, as is the case for the biospheric sink 
we infer between 30°N and 60°N. 

The annual mean oceanic and terrestrial 
CO, fluxes are plotted as a function of 
latitude in Fig. 2. There is a major sink on 
land between 30°N and 60°N prevailing 
from June to September (Fig. 3). Over the 
past 2 years, this sink has averaged 290 
Tmol (1012 mol) of CO, per year, which is 
equivalent to 3.5 gigatons of carbon (18) or 
more than half of the total global fossil fuel 
burning flux for those years. This is about 
200 Tmol more than the regrowth estimat- 
ed from forest inventory studies (1 9). There 
are several possible explanations for this 
large carbon sink in the terrestrial bio- 
sphere. Our result might be a preliminary 
indication that, in addition to regrowth of 
forests. nutrient fertilization or CO, fertili- 
zation'(or both) of temperate and sib-bore- 
a1 ecosystems is now occurring. Alternative- 
ly, climatic differences between 1992-1993 
and the previous decade may have altered 
the balance of photosynthesis and respira- 
tion in this area. Finally, this sink may not 
be a recent phenomenon but may have 
been present for decades. 

The study by Keeling and co-workers ( I )  
also made use of CO, and S13C data, but 
they came to the opposite conclusion that 
the CO, sink in the Northern Hemisphere 
had to be mostly oceanic. Their analysis 
relied much less on spatial gradients than 
ours. The strongest constraint in their anal- 
vsis was a box model of the carbon cvcle to 
keep track of the decadal mass balaices of 
CO, and 613C. After making some assump- 
tions about geographical aspects of the op- 
eration of the carbon cycle, they compared 
their calculated spatial distributions of CO, 
and 613C with observations as a consistency 
check. Our method relies primarily on the 
spatial distributions of concentrations and 
isotopes of recent years, and our conclusions 
are therefore limited strictly to 1992 and 
1993. 

A small part of the difference between 
the conclusions of this study and those of 
Keeling and co-workers can be attributed to 
the fact that their method, that is, the box 
model, is based on the storage of carbon, 
whereas ours detects only CO, fluxes to and 
from the atmos~here and not carbon trans- 
port in rivers or in the atmosphere by species 
other than CO, (7). We believe that a 
larger part of the difference is explained by 
our much greater data density. For 1992 and 
1993, a larger net annual uptake of CO, 
(-100 Tmol) is inferred for the 30°N to 
60°N terrestrial biospheric sink when our 
full network of measurement sites are used 
for calculations than when only the six sites 
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are used for which we have S13C time series 
in 1990 and 1991. It is also possible that part 
of the difference lies in the substantial tern- 

savannas (23), although the discussion the land biosphere may well have signifi- 
above suggests that the terrestrial sources 
rnav be overestimated. In the southern tron- 

cant implications for future increases in at- 
mospheric CO,. 

poral variability in the terrestrial and ocean- 
ic carbon sinks inferred from the Keeling 
isotope data cornpared with that from a long 
isotope record from Cape Grim by Francey 
and co-workers (20). Although there is no 
doubt about the existence of interannual 
variability in sources and sinks, the results of 
Francev et al. exhibit substantiallv less inter- 

i c s , ' ~ ~ ~  is released to the atmosphere froin 
September to December, though there is no 
significant annual mean source of CO,. In 
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Similarity of sli-I, a Regulator of Vulval 
Development in C. elegans, to the Mammalian 

Proto-Oncogene c-cbl 
Charles H. Yoon, Junho Lee, Gregg D. Jongeward, 

Paul W. Sternberg* 

Vulval induction during Caenorhabditis elegans development is mediated by LET-23, a 
homolog of the mammalian epidermal growth factor receptor tyrosine kinase. The sli-1 
gene is a negative regulator of LET-23 and is shown here to encode a protein similar to 
c-Cbl, a mammalian proto-oncoprotein. SLI-1 and c-Cbl share approximately 55 percent 
amino acid identity over a stretch of 390 residues, which includes a C,HC, zinc-binding 
motif known as the RING finger, and multiple consensus binding sites for Src homology 
3 (SH3) domains. SLI-1 and c-Cbl may define a new class of proteins that modify receptor 
tyrosine kinase-mediated signal transduction. 

T h e  induction of the  vulva in Caenor- 
habditis elegans provides a model systeln in 
which to  apply genetic analysis in order to  
dissect proto-oncogene function (1 ) .  Vul- 
val induction is mediated by LET-23, a 
homolog of the epidermal growth factor 
receptor tyrosine kinase; by SEM-5, a 
Grb2-like adantor; and bv LET-60, a Ras 
protein (2-4). Genetic analyses have 
identified negative regulators of this path- 
\lay. Thus,  the  sli-1 (suppressor of lineage 
defect) locus alas defined by extragenic 
suppressors of let-23 reduction-of-function 
(rf) mutations (5) .  T h e  let-23(rf) muta- 
tions cause at least five phenotypes: de- 
fects in ( i )  viability, (i i)  hermaphrodite 
fertility, (iii) male spicule development, 
( iv)  posterior epidermal development, and 
(v )  vulva1 differentiation (6) .  T h e  sli-1 (rf) 
mutations suppress all known defects of 
let-23(rf) mutations with the  exception of 
sterility. For example, the  sli-1 (sy143) mu- 
tation restores vulva1 induction to  wild 
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type in animals with let-23(sy97), a severe 
reduction-of-function allele that truncates 
a part of the  LET-23 cytoplasmic tail and 
results in a vulvaless (Vul) phenotype ( 6 ) .  
sli-1 does not ,  however, bypass the  require- 
ment for let-23 because sli-1 (rf) mutations 
do no t  suppress Let-23 null alleles, which 
are lethal. 

Reduction-of-f~~nction mutations in 
sem-5 and let-60 also display Vill pheno- 
types, and the products of these genes act 
do\vnstream in a signal transduction process 
initiated by LET-23 ( 3 ,  4) .  T h e  sli-1 (sy 143) 
mutation suppresses the Vul phenotype as- 
sociated with a weakly hypomorphic sem- 
j(n2019) to near, but not greater than, wild 
type; sli-1 (sy143) also weakly suppresses a 
very weak let-60(rf) mutation, n2021 (5) .  
Lethality associated with let-60(s1124), a 
severe hypomorph, is not  suppressed by sli- 
l(sy143) (5) ,  which suggests that the sli- 
1 (rf) mutation does not bypass the require- 
ment for LET-60. 

Although sli-1 (rf) rnutations alone are 
silent in a let-23(+) background, in combi- 
nation with a mutation in another silent 
negative regulator of LET-23-mediated vul- 
val development, unc-101, a sli-1 (rf) muta- 
tion displays a multivulva (MLIV) phenotype 
(7) .  Therefore, SLI-1 can act on  signaling 
by wild-type LET-23. 

W e  have now identified sli-1 at the  
molecular level by positional cloning. 
Three-factor mapping positioned sli-1 
midway between egl-17 and unc-1, which 
are about one map unit  apart o n  the  ex- 
treme left end of the  C .  elegans X chro- 
mosome (Fig. 1 A )  ( 5 ) .  T h e  restriction 
fragrnent length poly~norphism (RFLP) 
stP41 links the  genetic and physical maps 
in this region: stP41 is tightly linked to  
unc-1 and thus defines the  right boundary 
of our region of interest (8). Assuming 
that the  left boundary is the  left end of the  
X chromosome, sli-1 lies in the  middle of a 
region spanned by -40 cosrnids (9 ) .  T o  
assay for sli-l(+) wild-type activity, we 
used a sensitive vulva-specific let-23(rf) 
allele, sy 1 . Whereas let-23(syl) is Vul (Fig. 
2B), let-23(syl); sli-1 (sy 143) animals have 
a Muv phenotype (Fig. 2C).  W e  microin- 
jected candidate cos~nids from the middle 
of the  geno~nic  region of interest into the  
germ line of the  let-23(sy1); sli-l(syl43) 
parental strain and observed the vulva1 
phenotype of stably transfor~ned progeny 
in F2 or later generations (10) .  Microin- 
jection of the  cosmid T18D5 rescued the 
Muv phenotype of let-23(sy 1 ); sli-1 (sy143) 
double mutants, and stable germ line- 
transformed progeny showed the Vul phe- 
notype typical of let-23(sy 1) strains (Fig. 
1 A  and Fig. 2, B and D).  Other  cosmids in 
the  region (F02G3, F25H6, and F25E2) 
did not  rescue the Muv phenotype of the  
let-23(sy1 ); sli-1 (sy143) parent strain. 
T18D5 also rescued the Muv phenotype of 
another sli-1 allele, sy129, in our assay, 
which indicates that  this cos~nid contains 
the  wild-type activity of sli-1. 

W e  tested subclones of the 35-kb 
genomic insert of T18D5 to localize the 
region responsible for rescuing activity. A 
16-kb Eco RV-Nhe I subclone (pSlil .16) 
and a 10-kb Eco RV-Nhe I subclone 
(pSlil.10) retained the rescuing activity of 
T18D5 (Fig. 1B and Table 1).  Thus, these 
two subclones contain the wild-type sli-1 
gene; the smaller pSlil.10 is contained 
within the larger pSlil. 16. 

W e  isolated cornplementary DNAs 
(cDNAs) by probing the Barstead c D N A  
library with a 9-kb geno~nic  fragrnent that 
overlaps pSlil .10 ( I  1 ). O n e  c D N A  alas 
2.2 kb in length and is likely t o  be full 
length, because it includes the  last nine 
base pairs of the SL1 trans-spliced leader 
sequence at the  5 '  end. W e  also identified 
one class of alternatively spliced cDNA.  
W e  sequenced the full-length 2.2-kb 
cDNA,  the  longest available alternatively 
spliced cDNA,  and the genomic fragment 
in pSlil.10. T h e  open reading frame of the  
2.2-kb c D N A  encodes a putative transla- 
t ion product of 582 amino acids. T h e  
genomic structure of sli-1 consists of 11 
exons and 10 introns, spanning 6 kb in 
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