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A tooth, a chicken, or a potato? Initial 
glimpses of cytochrome c oxidase revealed 
its shape to be tooth-like by low-resolution 
analysis of two-dimensional crystalline ar- 
rays, and later descriptions were of a more 
elongated molecule rather resembling a 
dead chicken (1). At atomic resolution, this 
key protein in the generation of cellular en- 
ergy looks more like a potato. In this issue 
of Science. Yoshikawa and his collearmes now 
report the x-ray analysis of threi-dimen- 
sional crystals of the bovine oxidase (2). 

The achievement of Yoshikawa and his 
colleagues began 20 years ago, in a collabo- 
ration with W. Caughey, then at Colorado 
State University at Fort Collins. In 
Caughey's lab, during efforts to make highly 
concentrated cytochrome oxidase for infra- 
red spectral analysis, crystallization was ini- 
tially achieved. But that was only the be- 
ginning of a 15-year effort to obtain atomic- 
level resolution. The winning crystals were 
produced when Yoshikawa switched from a 
polyoxyethylene ether detergent to decyl 
maltoside. Since then, it has taken the 
Japanese group less than 1 year to solve the 
complete structure. 

With 13 different subunits, the mamma- 
lian cytochrome c oxidase is by far the most 
complex membrane protein to yield a de- 
fined structure. Although analysis of all the 
data is not vet com~lete. the basic features . , 

of the protein and a detailed picture of the 
metal bindine sites are now available. The - 
arrangement of the metal centers is in 
remarkable agreement with mutagenesis 
studies (3-5) and with the recently re- 
ported structure of another member of the 
large superfamily of heme-copper oxidases, 
the homolgous but simpler (four-subunit) 
cytochrome c oxidase from the bacterium 
Paracoccus denitrijians, presented by H. 
Michel at the meeting of the Protein Society 
in Davos, Switzerland, in June 1995. 

The main function of cvtochrome c oxi- 
dase, the terminal enzyme in the respiratory 
chain, is enerm conservation. Situated in -, 
the inner mitochondrial membrane in eu- 
karyotic organisms, cytochrome c oxidase is 
a proton pump that uses redox chemistry to 
drive protons from the mitochondrial ma- 
trix across the membrane. The electro- 
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chemical potential thus generated causes 
protons to flow back into the matrix via 
the FIFO adenosine triphosphate (ATP) 
synthase: The inward flux of protons is 
coupled to the synthesis of ATP from ad- 
enosine diphosphate (ADP) and inorganic 
phosphate (Pi). In this way, cytochrome c 
oxidase provides the driving energy for 
ATP synthesis. 

Electron transfer into cvtochrome oxi- 
dase is initiated by binding of cytochrome c 
to subunit I1 on the external side of the 
membrane (see figure). This subunit con- 
tains the CuA center, which is shown in the 
x-ray structure to be a bimetallic Cu-Cu site. 
Most studies on the electron transfer indi- 
cate a linear sequence of events, with the 

structural information helps to define the 
chemistry of the environment in which these 
reactions occur. 

How does cytochrome c oxidase couple 
the oxygen reduction process to the proton 
pump? The location of the metal centers to- 
ward the outside of the membrane dictates 
that the enzyme provide channels to facili- 
tate access of protons to the heme a3-CuB 
center to form water (one chemical proton 
per electron) and to be pumped across the 
membrane (one pumped proton per electron). 
Indeed, two possible channels are suggested 
in the structure of the bacterial oxidase. 

The story of cytochrome c oxidase 
started to take shape in 1925 when D. 
Keilin at Cambridge University described a 
series of pigment bands in cells and tis- 
sues-visible with a hand spectroscope, 
sensitive to oxygen, and present in 86 dif- 
ferent cell types, both eukaryotic and 
prokaryotic (10). He named these bands 
"cytochromes" (cell colors) and recognized 
that thev were the missing clue that would - 
resolve the long-standing controversy be- 
tween 0. Warburg's "Atmungsferment" and 
Weiland's dehydrogenase regarding the 
- source of enerev in living cells. He 

had discoveredu;he electrok transport 
chain. However, it was not until 1938 
(1 1) that the bands associated with 
cytochrome a3 were identified as the 
elusive cytochrome oxidase, Warburg's 
"Atmungsferment." 

In the 20 years that followed, enor- 
mous progress was made in under- 
standing the aerobic energy-generat- 
ing process, but a major difficulty in 
analyzing the individual components 
arose from their membrane-embedded 
nature. The full significance of the 
membranous character of the system 
only became apparent when Mitchell 
(12) proposed the chemiosmotic hy- 
pothesis of energy transduction. Then 
the role of the electron transfer chain 
in generating a separation of charge 

I acrGss the &embrine was clarifies, 
and the use of the electrochemical 
gradient to drive ATP synthesis was 

electrons proceeding from cytochrome c to understood. Nevertheless, the molecular 
CuA, then to heme a, and on to the heme mechanism of generating and utilizing the 
a3-CuB center (see figure) (6). Heme a, membrane potential remains to be solved. 
heme as, and CUB are all ligated to residues The structure presented by Tsukihara et 
within subunit I of the oxidase, and the al. in this issue (2) focuses on the location 
crystal structure shows they are at approxi- of the metals in the enzyme. As anticipated, 
mately the same depth in the membrane. two hemes A, three coppers, one magne- 
This feature, also predicted from mutagen- sium, and one zinc atom are resolved. The 
esis studies (4, 5), is in accord with the heme a apd heme a3-CuB centers are lo- 
finding that the electron transfer between cated 13 A into the membrane, close to the 
the hemes does not per se generate a trans- side where cytochrome c reacts. Three his- 
membrane electric potential. Oxygen binds tidines on two transmembrane helices ligate 
to heme a3 and is reduced ro water through CUB, with two of the histidines being adja- 
a series of short-lived, elusive intermediates, cent residues in the sequence. This unusual 
yet to be fully characterized by various time- arrangement was predicted from mutagen- 
resolved spectroscopies (7-9). The new esis studies (4, 5); but a tyrosine, proposed 
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as a possible alternative ligand to CUR (4,  
13), is instead packed close to one of the 
histidine ligands and is hydrogen-bonded to 
the hydroxyl of the hydroxyethylfarnesyl 
side chain of heme a?. This orovides an in- 

years, but has now been clearly resolved. 
The amino acid ligands within subunit I1 
were correctlv nredicted on the basis of ho- 

would be difficult to discern what features 
are of fundamental importance. Given the 
structures of the two enzvmes in two differ- , . 

mology to type-1 "blue" copper proteins 
and, subsequently, by mutagenesis studies 
(1 8). However, unlike the single-Cu blue 
copper proteins, the CuA l o ~ u s  contains two 
Cu atoms, which are 2.7 A apart, perhaps 
close to the distance of a Cu-Cu bond, 
recently predicted from EXAFS studies 
(19), but bridged by two cysteine residues. 
A similar structure has also been observed 
in the bacterial oxidase and in the re- 

ent states, the common features become 
highly significant. Indeed, with the wealth 

teresting and unsuspected linkage between 
CuB and heme a3 in this critical oxygen-re- 
ducine center. 

u ,  u 

of structural information now available, not 
only for cytochrome c oxidase but also for 
the ATP svnthase 128). the field of bioener- " 

Although the arrangement of the metals 
within the heme a?-Cun center is similar 

~ , ,  

getics has become a gold mine of knowledge 
relevant to the structure and function of 

2 L, 

to that predicted by spectral a~alysis, with 
an iron-copper distance of 4.5 A, there are 
some surprises: The Cu is displaced upward 
frop the axis normal to the heme by about 
1 A, and no bridging ligand is resolved be- 
tween these metal atoms. This latter find- 
ing conflicts with some EXAFS studies, 
which concluded that a chloride (or sulfur) 

complex, multisubunit, membrane-associ- 
ated proteins, which may well move many 
fields ahead. 

cently reported structure of the recon- 
structed CuA-containing soluble domain 
of the homologous cytochrome bo3 from 
Escherichia coli (20). 

The Cua locus is near the interface of 
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