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Recurrent Excitation in Neocortical Circuits 
Rodney J. Douglas,* Christof Koch, Misha Mahowald, 

Kevan A. C. Martin, Humbert H. Suarezt 

The majority of synapses in the mammalian cortex originate from cortical neurons. Indeed, 
the largest input to cortical cells comes from neighboring excitatory cells. However, most 
models of cortical development and processing do not reflect the anatomy and physiology 
of feedback excitation and are restricted to serial feedforward excitation. This report 
describes how populations of neurons in cat visual cortex can use excitatory feedback, 
characterized as an effective "network conductance," to amplify their feedforward input 
signals and demonstrates how neuronal discharge can be kept proportional to stimulus 
strength despite strong, recurrent connections that threaten to cause runaway excitation. 
These principles are incorporated into models of cortical direction and orientation se- 
lectivity that emphasize the basic design principles of cortical architectures. 

T h e  basic functional architecture of the 
neocortex, which forms 70 to 80% of the 
nrimate brain. is now well established: Neu- 
rons with similar functional properties are 
aggregated together, often in  columns or 
swirling, slab-like arrangements. This archi- 
tecture reflects the fact that, although lat- 
eral connections do occur between and 
across columns ( I ) ,  most connections are 
made locally within the neighborhood of a 
l-mm column, as Hubel and Wiesel (2) 
originally suggested (3). 

The neocortex is dominated by excita- 
tory connections. Eighty-five percent of 
synapses within the gray matter are excita- 
tory and most of these synapses originate 
from cortical neurons (4). Moreover, about 
85% of the 5000 to 10,000 synapses made 
by excitatory neurons are onto other exci- 

R. J. Douglas, lnstitute of Neuro~nformatics, Unlverslty 
and Eidgenossische Technlsche Hochschule, Zurlch 
8006. Sw~tzerland; Computation and Neural Systems 
Program, 139-74, Calfornia lnstitute of Technology, Pas- 
adena, CA 91 125, USA; and Center for Biological and 
Medlcal Systems, Imperial College, London SW7 ZBT, 
UK. 
C. Koch and H. H. Suarez, Computation and Neural 
Systems Program, 139-74, Californa lnstitute of Tech- 
nology, Pasadena, CA 91 125, USA. 
M. Mahowald, lnst~tute of Neurolnformat~cs, Unlverslty 
and Eidgenossische Technlsche Hochschule, Z~irlch 
8006, Switzerland, and Center for Biological and Medical 
Systems, Imperial College, London SW7 ZBT, UK. 
K. A. C. Martn, Medcal Research Councl Anatomcal 
Neuropharmacology Unit, Oxford OX1 3TH, UK. 

'To whom correspondence should be addressed. 
:Present address: Lancet Onllne Corporation, Kendall 
Square, Cambrdge, MA 021 39, USA. 

tatory neurons (4, 5), which suggests that 
excitatory corticocortical synapses must 
contribute strongly to the response charac- 
teristics of individual neurons. This view is 
in  agreement with electrophysiological 
findings (6). In interpretations of cortical 
function, however, feedback excitation has 
been almost completely neglected in favor 
of a simple feedforward view (2,  7). But we 
now know, on  the basis of anatomical evi- 
dence, that feedforward excitation from 
subcortical structures is not prominent: In 
the primary visual cortex of cats and pri- 
mates, connections arising from the lateral 
geniculate nucleus (LGN) make up less 
than 10% of excitatory synapses formed 
with the input neurons of cortex layer IV 
spiny stellate cells (8). Most synapses onto 
spiny stellate cells originate from layer VI 
pyramids and other spiny stellate cells (9).  

Given this massive excitation, which 
has been proposed to be a basic feature of 
cortical o~era t ion  (10). can we infer the ~ , ,  

fraction of neurons that make first-order 
recurrent or reci~rocal connections, in 
which two neurons directly excite each oth- 
er i 1 I ) ?  W e  estimated the number of such . , 

recurrent connections for the spiny stellate 
cells of layer IV in the cat visual cortex 
from our detailed three-dimensional (3D) 
reconstructions of the axons and maps of 
the synapses they receive (9).  The  boutons 
of these cells usually occur in a few clusters 
(12). Approximation of the radial density of 
synaptic boutons in the cluster surrounding 
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the soma by a 3D Gaussian distribution 
(characterized by its standard deviation a; 
Fig. 1A)  enables straightforward computa- 
tion of the fraction of synapses onto a spiny 
stellate cell in layer IV (Fig. 1B). Even 
when we only consider synapses wlthin this 
~ r i m a r v  cluster, recurrent connections 
among spiny stellate cells can provide a 
significant source of recurrent excitation. 

The  electronic circuit analogy of Fig. 2A 
illustrates how recurrently connected neu- 
rons amplify current (13). The current-dis- 
charge curve of a single representative neu- 
ron shows that the discharge frequency is 
proportional to the excitatory current de- 
livered to the soma. Discharge is represent- 
ed by voltage in the electronic model; here, 
a conductance G ithe value of which is 
inversely related to the slope of the current- 
discharge curve) will yield the discharge 
relation of a hypothetical linear neuron. 
The neuron's firing frequency F corresponds 
to the voltage across the conductance in- 
duced by the total current reaching the 
"soma" in our simple model of a neuron. 

The  simplest case of recurrent excitation 
occurs in a population of identical neurons, 
all receiving the same feedforward input 
current Iff and forming identical synapses 
with each other. Any one neuron within 
this population contributes some excitatory 
current to each of its neighbors in the pop- 
ulation and receives from all of them a 
recurrent feedback component I,,,. As a 
simple model of synaptlc interactlon, we 
assume that the current that flows into a 
neuron from an excitatory synapse is pro- 
portional to the discharge frequency of the 
presynaptic cell. Because all synapses and 
neurons are assumed to be identical, we can 
reduce this network to a single neuron that 
receives a recurrent current I,,' proportion- 
al to its own firing frequency F. This 
lumped recurrent synapse behaves as a volt- 
age-controlled current source with an am- 
plitude of aF, where a is the excitatory 
conductance. W e  can think of a as a phe- 
nomenological "network conductance" be- 
cause it is generated by the activity of the 
network of neurons. At  equilibrium, the 
firing rate of the network F* must obey 

If, + aF* = GF* (1 

(Fig. 2B). Thus, the output of the popula- 
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tion is proportional to the feedforward in- 
put current, according to the expression 

If G > a, the recurrent excitation within 
the population is stable in the sense that it 
remains bounded without the restraint of 
saturation. In electrical engineering terms, 
the open loop gain, a / G ,  in this case is less 
than 1. By contrast, the amount by which 
the circuit amplifies iff, the closed loop or 
system gain, 

can be much greater than 1. As a approach- 
es G ,  the total input current is mainly at- 
tributable to the recurrent current Ire, rath- 
er than the feedforward current I, and the 
response of the system becomes dominated 
by the contribution of the recurrent path- 
way. If a > G ,  the open loop gain exceeds 
1 and there is no enuilibrium. A small 
change in total input current generates a 
recurrent current that exceeds the original 
change and so the system diverges until it is 
driven into saturation. 

What is the open loop gain for current 
amplification within a population of stellate 
cells? A d a ~ t e d  cortical neurons have a cur- 
rent-discharge relation that is linear over 
the first nanoampere, with a slope of 100 
spikes per second per nanoarnpere to the 
nearest order of magnitude. Thus, G is 10 

u 

pA per spike per second. Values of a are 
calculated from the current delivered bv 
each excitatory synapse and the number of 
recurrent excitatory synapses. Each synapse 
provides roughly 0.1 pA per spike per sec- 
ond (14). Figure 1B shows that neurons 
with bouton distributions of o = 100 u,m 
woulil make 117 first-order recurrent cbn- 
nections with as many neighbors, which 
~mplies that a is 11.7 pA per spike per 
second in this case. Because a > G the 
open loop gain is greater than 1, and in the 
absence of inhibition, the population of 
cells would reach their maximal discharge 
rate. Removal of the initial stimulus, the 
feedforward LGN input, would have no ef- 
fect on  the subsequent activity because the 
recurrent excitation alone is sufficient to 
keep the population active (1 3 ,  15). 

Visual cortical neurons do not exhibit 
this bistability; for example, they respond 
proportionally to changes in contrast (16). 
Proportional behavior can be achieved by 
controlling the recurrent amplification with 
small amounts of feedforward or feedback 
inhibition that affect the open loop gain. If 
the feedback inhibitory synapse is approxi- 
mated as a current source with an amplitude 
of PF, then p acts as an inhibitory network 
conductance of the opposite sign to the 
excitatory network conductance. Under 

these conditions, the total recurrent current a ) .  The feedback inhibition mediated by 
arriving at the soma is given by I,,, = ( a  - linear synapses acts as a multiplicative, 
p)F, with a steady-state firing frequency F:': shunting-like inhibition that changes the 
given by Iff + (a - P)F" = GF"' (Fig. 2B) gain of the cortical response to a given 
and an amplification factor of 1/(G + P - i n p ~ ~ t  current (Fig. 2B), whereas linear feed- 

Layer IV spiny stellate - 
Layer I l l  pyramid - - ~  

Fig. 1. Recurrent synaptic connections between spiny 
neurons n cat visual cortex. (A) Radial densty of synaptc 
boutons as afunction of the distance from the cell body of 
two cells, a layer V A  spiny stellate and a layer - I l l  pyra- 2 m~dal neuron. In both cases. the axons could not be ,- 
completely reconstructed and the total number of bou- % 
tons is underestimated Nevertheless, the data show that 2 
the primary cluster of boutons extends from the soma to 1 
a distance of about 500 Fm. The prmary bouton clusters 
of these cells can be descrbed by a sphercal Gaussian Radial distance (pm) 
distribution with u between 100 and 120 km. Data were 
obtained by computer-ass~sted reconstruction of neu- 
rons n cat striate cortex that had been labeled w~th Recurrent synapses- 

horseradish perox~dase durng the course of physioog- 
ca  exper~ments n vivo. (B) Numerical estmate of the 
number of first-order recurrent connections made within 
the prmary cluster of a spiny stellate neuron. and of the 
number of neighboring splny stellate neurons that partc- 
ipate n these recurrent connections as a functon of the 
standard deviat~on u of the axona tree. For clusters w~th 
a = 100 km, spiny stellate cells recelve 1 1  7 recurrent Standard deviation ol bouton arbor (pm) 
connectons from as many neghbors. For u = 150 km, 
there are only 34 recurrent connect~ons. The followng parameters. drawn from the ~terature and our own 
data, were used to calculate these estmates: 4 x 1 G4 spny stellate cells per cubic milmeter, 6 X 1G8 
asymmetr~cal (excitatory) synapses per cubic mimeter, and 5000 total synapses on the soma and 
dendr~tes of stellate cells (of which 1200 derive from other stelates). No excitatory synapses are made 
within 10 km of the somata of spiny stellate cells. Five thousand synapses are made by the axona arbor 
(of whch 1200 are made onto other stellate cells). We assumed that one-th~rd of the boutons occur In the 
prlmary cluster and that they are homogeneously distributed n 30 space. 

Fig. 2. Current amplif~cat~on by recurrently connected 
neurons. (A) An electronic equivalent c~rcuit for a d~s-  A 
charging cort~cal neuron embedded in ~ t s  recurrent net- 
work, I, denotes the current dissipated by the spike d s -  Iff 

---t 
charge mechansm, whch is assumed to be linear and 
characterized by conductance G. Recurrent excitat~on 
generates an effective "network conductance" a, whch - - 
is represented n the schematc as a current source that is 

- 

controlled (gray arrow) by the output voltage across G 
(that is, by the firing frequency of the neuron). Recurrent 
~nh~bition generates another network conductance, p. - 
The effectve conductance of the neuron is thus G,, = G e 1 + p - a. (B) Current-dscharge relations character~zng P F* 
the behavor of the cortical amplifier. The 1/G line, corre- c 

VI 

sponding to the current-dscharge curve, expresses the .- 
n 

amount of current I, dissipated across the somatic mem- 
brane by spke currents at discharge rate F The 1/(G + (3) 
curve Indicates the increased current, I, + I,,,, requ~red to 0 

0 f Current 
maintain a given dscharge rate in the presence of inhibi- Iff 
tion that is proportonal to the output of the neurons The 
I/a curve expresses the dependence of the excitatory 
feedbackcurrent I,,,, measured in a particular neuron, on 
the average output rate of neurons in the popuaton. For Unadapted p, 
any part~cular input current I,, the steady-state discharge $ 
rate F occurs where the equaton I,,, + I, = I, + I ,,, IS 

satsfied. At F the nput current I, is exceeded in ampli- 
tude by the recurrent current I,,,. (C) Adapted (A) and 

50 
Adapted 

unadapted (UA) current-dscharge curves and feedback 
current I,,, for a population of rea~stc  pyramidal neurons 
modeled by computer simuat~ons (1 7). The adapted cur- '0 0.2 0.4 0.6 0.8 1 
rent-discharge and the recurrent current reaton are ap- 
prox~mately Ihnear. Because the adapted current-d~s- Current (nA) 

charge curve does not cross I,,, and the two curves dverge away from each other, the network acts as 
a proport~onal amplif~er. 
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forward inhibition acts more like an offset 
that reduces the input current I,,, by a given 
amount. 

Even in the absence of inhibition, pro- 
portional ainplification inay be iinposed by 
the intracortical arborization of the axonal 
tree of the spiny stellate cells. Figure 1B 
shows that recurrence (and hence the open 
loop gain) falls off steeply with o. For ex- 
ample, neurons with a bouton distribution 
o = 150 ~ 1 1 1  inake 34 first-order recurrent 
connections with 34 neighboring stellate 
cells. Under these circumstances, ct falls to 
3.4 pA per spike per second, the open loop 
gain of recurrent excitation is less than 1, 
and the circuit provides stable current ain- 
plification. Although these numerical esti- 
mates of the open loop gain are hypotheti- 
cal, the spatial extent of the axonal tree 
may be an important factor in determining 
the arnplitude of the feedback. 

We evaluated the performance of the 
recurrent excitation rnodel against experi- 
mental results by modeling direction-selec- 
tive neurons in a patch of cat striate cortex 
( 1  7,  18). Our aim was not to study direction 
selectivity per se, but rather to confirm the 

~rinciules described above in the context of 
a simple cortical operation with realistic, 
spiking neurons. The network in our model 
consists of 40 excitatory (pyramidal) neu- 
rons and 10 inhibitory (smooth) neurons 
(19). Members of the pyramidal population 
are interconnected by excitatory synapses, 
but for sim~licitv the inhib~torv neurons 

L ,  

provide feedforward inhibitory synapses 
onlv. Each neuron com~rises a somatic 
compartinent containing the standard com- 
pleinent of voltage-dependent ineinbrane 
conductances found in cortical cells, and 
three or four ~assive dendritic comDart- 
inents. The spiie discharge of the pyainids 
adapts within 50 ms. The sinooth neurons 
are nonadapting (20). 

Figure 2C shows the current-discharge 
curves for the pyramidal cells as well as the 
recurrent current, I,,,, as a function of the 
average discharge rate of the pyramidal pop- 
ulation. Because I,,, does not intersect the 
adapted current-discharge curve, the net- 
work does not show hysteretic behavior but 
rather relaxes to its resting state when the " 

input is withdrawn. Moreover, because the 
I,,, curve diverges froin the adapted cur- 

Fig. 3. Tests of recurrent ex- 300 A 
ctation in a computer model 
of a population of direction- 
selective pyramidal cells. (A) 5 0 , I D  1 , 

100 -/w-' \,,+,*.-,.-, 

Percentage change from 
baseline somatlc nput con- OO z 
ductance durng st~mulat~on 2 0 
by a bar (visual stimulus) : :::I - , .  .;;, 

0 50 100 150 

movng in the null directon n .= Direction index (%) 
the feedback model, com- = 
pared w~th a purely feedfor- 200 . .. . ..% 

ward model (B). Conduc- .. _ .. . . .,,.*--.:, 100 ::'.?....-- " 
tance is measured by Inject- 
ing hyperpolariz~ng current. Oo 1 2 
The response of the feed- 
back model depends on 0.5 y C 
amplfication of the small ex- 

-i_; 
2 MV 

citatory feedforward nput 0,3 100 rns 

from LGN afferents. Th~s = 
feedforward input current 0,1 

F 
can be controlled w~th a 
moderate inhibtory conduc- -0.1 3 v$\ 
tance change, n agreement 0 0.2 0.4 0.6 
w~th experimental data (24). Time (s) 
The purely feedforward 
model receves strong excitatory nput current from the LGN. The control of ths large current requires a 
large inhibtory conductance change. (C) The recurrent exctatory current (solid curve) generated during 
preferred stimuaton, compared with the net input current (dotted curve; the dfference between excita- 
tory current from the LGN and feedforward inhibitory current). In this example, the net feedforward nput 
current is amplified by about 4.7 to yield the total excitatory current. (D) Histogram of drecton seectivty 
Indices of all pyramda neurons In the normal population (solid bars), compared with the case when 
inhibition is blocked in a slnge pyramidal cell (done consecutively for all cells: open bars). Directon 
selectivity is dminished, but not lost, In agreement with expermental data (25). (E and F) Jagadeesh eta/. 
(26) applied a "linearity" test by comparing the modulations of somatlc membrane potentla1 of a 
directon-selective cell in response to a driftng sine-wave grating (1 cycle per degree, 2 degrees per 
second) (solid line) to the response predcted by summaton of the modulat~ons evoked by stationary 
contrast reversal gratings at eight different spatial phases (dashed Ine). Cells In cat vsual cortex [modified 
from (26)] (E) and In the model (F) pass ths test. whch implles that a network w~th masslve feedback can, 
under certain mlted conditions, behave nearly. Each modulat~on IS the average of the membrane 
potenta over 56 grating cycles. The same median filter was used in both cases to remove acton 
potentas. 

rent-discharge curve, the neurons will am- 
plify their input in a proportional manner 
( 1  3). The feedforward input signal to the 
cortical cells arises from the LGN, whose 
neurons exhibit little directional prefer- 
ence. Cortical direction selectivity depends 
on a spatial offset between the LGN inputs 
to pyramidal and smooth cells (21 ,  22). In 
the preferred direction, excitation precedes 
inhibition, which allows the neurons to 
begin discharging; in the null direction, 
excitation and feedforward inhibition over- 
lap temporally and cancel each other. 

In a purely feedforward model, feedfor- 
ward inhibition must be powerful in the 
null direction to suppress the strong excita- 
tion, which must be provided solely by the 
LGN input. Our simulations (Fig. 3B) con- 
firin that this inhibition should be associat- 
ed with large changes in the somatic input 
conductance that would be almost entirely 
visible from the soina (23). Yet direct in- 
tracellular measurements have shown that 
such large shunting changes in conductance 
do not occur (24). The paradox of massive 
excitation and inhibition in the preferred 
direction but only sinall inhibition in the 
null direction is resolved within the frame- 
work of current amplification by cortical 
circuits. In the preferred direction, the 
slnall LGN excitation is large enough to 
bring the pyramidal cells above their firing 
threshold. In the rnodel outlined above, 
within 100 Ins the recurrent current is 4.7 
times the effective input current (Fig. 3C). 
The amplified input elicits a brisk discharge 
from the neuron. In the null direction, the 
small LGN excitatioil overlaps in time with 
feedforward inhibit~oll and the-cell remains 
silent. This small alnount of inhibition pro- 
duces only small changes in the somatic 
input conductance (Fig. 3A). 

Iontophoretic application of bicuculline, 
a selective antagonist of y-aininobutyric 
acid A (GABA,) receptors, leads to a sig- 
nificant reductton or even outright elimi- 
nation of direction selectivity in siinple 
cells in cat striate cortex (21 ). We obtained 
analogo~ls results with our model ( 1  7). In an 
elaboration of Sillito's experiments, Nelson 
e t  al. (25) blocked GABAA and GABAR 
receptors intracellularly in a single neuron. 
They foulld that direction selectivity was 
reduced, but did not disappear,iin this cell. 
The same result holds for our inodel (Fig. 
3D), because the,major fraction of the ex- 
citatory current in a single GABA-blocked 
neuron derives from other cortical cells 
whose direction selectivity is unaffected. 

Despite the a~n~lification inherent in 
our recurrent excitation model, it reproduc- 
es the linear behavior reported by Jagadeesh 
e t  nl. (26). They observed that the intracel- 
lular potential in si~nple cells in response to 
a inoving sinusoidal grating is accurately 
predicted by the sum of the ine~nbrane re- 
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sponses to eight spatially displaced station- 
ary gratings (Fig. 3E). This seemingly linear 
behavior was also obtained in our model 
(Fig. 3F); it IS partly explained by the nature 
of the stimulus (27) and partly by the spike 
conductances sinking much of the excess 

0 

current that would otherwise show up as 
nonlinear contributions to the membrane 
potential (17). Thls model demonstrates 
that realistic recurrent cortical circuits can 
achieve proportional amplification and sta- 
bility, and that their directional behavior 
agrees with sophisticated intracellular data. 
The same urinci~les of recurrent excitation 
have been used in models of cortical orien- 
tation tuning (28). 

The computational significance of recur- 
rence is well illustrated by the orientation 
case. because in that ~roblem the current 
gain experienced by each neuron depends 
not on a single homogeneous value of a (as 
described in Fig. 2A) but on the time-depen- 
dent network conductances arising out of - 
the excitatory and inhibitory feedback, 
C m g ( t )  and CP,!(t), froin cortical cells re- 
sponding to different orientations (here the 
sum is taken over all conllections amone 
neurons i and j). The variable gain and ac- 
tive thresholding that arise out of these cou- 
plings enable the network to enhance noisy 
incoming signals in the following way. 
When a noisy input signal is presented to an 
orientatiotn-selective population of cortical 
cells (Fig. 4A), the gains of the individual 

pyramidal neurons are at first equal to each 
other because their outputs are randomly 
correlated. The incoherent outputs of the 
pyramidal neurons are averaged by the in- 
hibitory interneurons, which provides an 
effective threshold across the pyramidal 
cells. This threshold has the effect of un- 
coupling the pyramidal neurons as some 
members of the population that receive 
onlv weak i n ~ i ~ t  fall silent. That effect 
increases the relative m z  between the sur- 
viving pyramids, and tkeir gains remain 
high or increase while the gain of isolated 
firing neurons falls. The increased o u t ~ u t  

u 

of the survivors enables them to increase 
the inhibitory threshold, thereby improv- 
ing the correlatioll in activity of the active 
neurons, and so on. Initially the illhlbitioll 
is subtractive in aualitv because it is the 

A ,  

average over incoherent pyramidal activi- 
ty. But as the computation converges, the 
inhibition becomes divisive because its ef- 
fect on the surviving ~yramids is better - L ,  

correlated with their discharge and the 
inhibitory network cond~lctance (see 13 
above) is expressed. 

Overall, the population of neurons co- 
operatively restores the iincoming stimulus 
toward a pattern that is latent in the recur- 
rent connectivity; this permits meaningful 
outputs to be extracted from incomplete or 
noisy input patterns by llleans of variable 
thresholding followed by amplification (Fig. 
4B) (29). This restoration is related to re- 

Fig. 4. Signal restoration by recurrent excitation. A sec- 
ond. more simpfied, model network comprises 42 excl- 

1 -A  
Total - 

tatory and 7 inhibitory "neurons" of the kind described in 0.8- 

Fig. 2, A and B. The excitatory neurons are coupled to 5 0 . 6 ~  
each other by excitatory connections falng off as a - 
Gaussan distributon (with amequvalent to two neurons; 0.4- 

clrcular boundary conditions are used). The inhibitory 
neurons receve Input from overappng subpopulations 
of excitatory cells. The synaptic strengths of these con- 
nections are also Gaussian (a = 4). All Inhibitory neurons 0 5 10 15 20 25 30 35 40 
make synapses onto the excitatory population with uni- Neuron number 
form strength. The network receives a Gaussian pattern 250 B 
of feedforward input currents from the LGN, and this 
pattern is degraded by a variable amount of noise. (A) 
Amplification of the noisy feedforward input current [sig- 
nal-to-noise ratio (S/N) = 1.8, here caused by a very 5 150 

noisy oriented signal] by the recurrent network results in $ 
the net output current indicated by the solid line. After 0 

convergence, most of the noise is subthreshold, while the 
positive part of the signal is amplified and restored toward 
the expected Gaussian distribution. The final inhibitory 
current (dotted line) is shown as a positive current against Input SIN 
which the feedforward LGN input signal is compared. 
The output of a purely feedforward model (dashed line) is simply that part of the LGN signal that exceeds 
the inhibitory current without any signal restoration. (B) Signal enhancement by recurrent excitation and 
active thresholding. S/N ratios of feedforward inputs and neuronal output discharges are compared in 
simulations similar to those described in (A). The line labeled Control indicates the parity expected 
between input and output S/N in an ideal linear unity gain amplifier. In the absence of recurrence (a = 01, 
smple feedforward inhibitory thresholding of a noisy feedforward excitatory signal provides slight signal 
enhancement, Increasing feedback excitation (a) improves the signal-enhancing properties of the net- 
work by a combination of amplification and feedback thresholding that restores the noisy input toward 
patterns latent in the network connectivity. The thresholding inhibition required is relatively small because 
small feedforward LGN inputs are amplified. 

call in content addressable (associative) 
rnernories composed of sigmoidal neurons 
(15). However, those networks typically 
have very strong positive feedback and 
many stable attractors, whereas the cortical 
circuits presented here operate in a domain 
where they can represent in a proportional 
manner various aspects of the input, such as 
its contrast or velocity. Functionally, the 
recurrent cortical architecture combines as- 
pects of analog signal processing ("smart" 
amplification) with digital signal processing 
(signal restoration). Similar circuits are 
likely to explain receptive field properties 
in other sensory areas. The high degree of 
cortical interconnectivity, compared to the 
small number of extracortical inputs, raises 
the possibility that receptive field properties 
are not so much determined bv the s~ecific 
patterns of thalamic afferents but are 
shaped by the collective behavior of large 
populations of cortical cells. If so, the cor- 
tex would remesent a substantially richer 
modifiable architecture than standard feed- 
forward models (30). 
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Object-Centered Direction Selectivity in the 
Macaque Supplementary Eye Field 

C. R. Olson* and S. N. Gettner 

Object-centered spatial awareness-awareness of the location, relative to an object, of 
its parts-plays an important role in many aspects of perception, imagination, and action. 
One possible basis for this capability is the existence in the brain of neurons with sensory 
receptive fields or motor action fields that are defined relative to an object-centered frame. 
In experiments described here, neuronal activity was monitored in the supplementary eye 
field of macaque monkeys making eye movements to the right or left end of a horizontal 
bar. Neurons were found to fire differentially as a function of the end of the bar to which 
an eye movement was made. This is direct evidence for the existence of neurons sensitive 
to the object-centered direction of movements. 

M a n y  behaviors and mental processes re- 
quire the use of spatial information defined 
in an obiect-centered reference frame. Vi- 
sual object recognition, for example, is gen- 
erally thought to require explicit encoding 
of the locations of parts relative to the 
object ( 1 ) .  Visually guided motor behavior 
also depends on object-centered informa- 
tion. The hand, in reachine around an ob- " 

ject, must move along a trajectory defined 
relative to the object. Likewise, the eyes, 
during scanning, may be directed to a fea- 
tureless point defined solely by its relation 
to visible details elsewhere in the scene. 
Evidence that localized groups of neurons 
represent specific parts of object-centered 
space has been provided by studies of visual 
neglect in humans. In many cases of hemi- 
field neglect, patients overlook features on 
the contralesional side of a visible object 
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even when the neglected side of the object 
has been viewed through the good hemi- 
field (2) .  Object-centered neglect must 
arise from the loss of neurons that mediated 
awareness of one half of the current refer- 
ence object rather than one half of visual 
snace or the retina. Such neurons could be 
expected to have sensory receptive fields or 
motor action fields defined with resDect to 
the current reference object. Previous sin- 
gle-unit studies have produced only limited 
evidence for the existence of neurons with 
these properties (3). In this report, we dem- 
onstrate that neurons in the supplementary 
eye field (SEF) of the macaque monkey 
encode eve-movement direction with re- 
spect to ar; object-centered reference frame. 

The SEF is an oculomotor area on the 
dorsomedial surface of the frontal lobe. 
Electrical stimulation of the macaque SEF 
elicits eye movements with complex prop- 
erties, including dependence on initial or- 
bital nosition 14). Neurons In the SEF dis- , , 

charge preferentially before and during sac- 
cades in a restricted range of directions (5). 
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Some SEF neurons are selectivelv active 
during the learning of associations between 
visual-nattern cues and eve-movement di- 
rections (6). These observations suggest 
that the SEF mediates processes of compar- 
atively high order that are related to oculo- 
motor control. 

We prepared two male macaque monkeys 
for single-unit recording by standard meth- 
ods (7). We mapped out the SEF in both 
hemispheres of one monkey and in the right 
hemisphere of the second monkey (8). To 
assess object-centered direction selectivity, 
we trained the monkevs to uerform an ocu- 
lomotor task in which the'object-centered 
direction of eve movements ito the left or 
right end of a horizontal targe; bar) could be 
dissociated from their orbit-centered direc- 
tion (leftward or rightward in the orbit). 
The sequence of events during a representa- 
tive trial is shown in Fig. 1A. A cue present- 
ed early in each trial (a spot superimposed 
on one end of a samnle bar) instructed the 
monkey to look to the left or right end of the 
target bar. The target bar subsequently ap- 
peared at one of three locations (Fig. 1B). 
Across eight possible conditions (Fig. lC), 
eye-centered direction (leftward or right- 
ward in the orbit) was f ~ ~ l l y  counterbalanced 
against object-centered direction (to the left 
or right end of the bar) (9)., 

Twenty-nine neurons in one monkey 
were studied while the monkey performed 
this task. The neuron shown in Fie. 2 fired " 
more strongly when the eye movement was 
to the left end of the target bar ileft col- 

u 

umn) than when it was to the right end 
(right column). This was true regardless of 
the orbital direction of the movement 
(rightward in the first and third rows; left- 
ward in the second and fourth rows). Firine " 
was stronger in bar-left trials, not only dur- 
ing the period between the cue and the 
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